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Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^  0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [? ]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [? ].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [? ], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [? ].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [? ], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [? ], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

# don’t forward lldp packets
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The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [? ]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [? ].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [? ], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [? ].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [? ], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [? ], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

# don’t forward lldp packets
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to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [? ]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [? ].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [? ], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [? ].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [? ], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [? ], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

# don’t forward lldp packets

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^  0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [? ]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [? ].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [? ], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [? ].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [? ], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [? ], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:
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Thank	
  
you!	
   Read	
  the	
  paper:	
  

frene-c-­‐lang.org/papers	
  

Get	
  the	
  code:	
  
github.com/frene-c-­‐lang/netcore	
  

See	
  the	
  demo:	
  
Find	
  me	
  a4er	
  the	
  talk!	
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Programming	
  with	
  Slices	
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Programming	
  with	
  Slices	
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Ethernet	
  type:	
  
0x0806	
  

Ethernet	
  type:	
  
0x0800	
  



Contribu-ons	
  

•  A	
  new	
  language	
  for	
  
slices.	
  

•  A	
  compiler	
  that	
  
enforces	
  isola-on.	
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Contribu-ons	
  

•  A	
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  for	
  
slices.	
  

•  A	
  compiler	
  that	
  
enforces	
  isola-on.	
  

•  A	
  verifier	
  that	
  
guarantees:	
  

79	
  

B	
  A2	
  A1	
   A3	
   A4	
  

Slice	
  Compiler	
  

B	
  A3	
   A4	
  A2	
  A1	
  



Contribu-ons	
  

•  A	
  new	
  language	
  for	
  
slices.	
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  verifier	
  that	
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–  isola-on	
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Verifying	
  the	
  Results	
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Thank	
  
you!	
   Read	
  the	
  paper:	
  

frene-c-­‐lang.org/papers	
  

Get	
  the	
  code:	
  
github.com/frene-c-­‐lang/netcore	
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Establishing	
  Isola-on	
  

•  Confiden-ality	
  and	
  integrity	
  are	
  global,	
  end-­‐
to-­‐end	
  proper-es.	
  

•  But	
  we	
  can	
  establish	
  isola-on	
  by	
  enforcing	
  
simple,	
  local	
  proper-es.	
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Implementa-on	
  

•  VLAN-­‐based	
  implementa-on.	
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Verifica-on	
  

•  SAT	
  encoding	
  (with	
  Z3)	
  
•  Separate:	
  given	
  two	
  compiled	
  slices,	
  
guarantee	
  that	
  they	
  are	
  separate.	
  

•  SemanZcs-­‐preserving:	
  given	
  a	
  source	
  slice	
  +	
  
program	
  and	
  a	
  compiled	
  program,	
  verify	
  that	
  
they	
  are	
  seman-cally	
  equivalent.	
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Read	
  the	
  paper:	
  
hLp://www.cs.princeton.edu/~cschlesi	
  
	
  
Download	
  the	
  code:	
  
hLps://github.com/frene-c-­‐lang/netcore	
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Isola-on	
  as	
  Modularity	
  

•  Queries/network	
  monitoring.	
  
•  ARP	
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PORT	
  !=	
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One	
  approach:	
  like	
  SFI	
  

•  Draw	
  a	
  box	
  around	
  each	
  network	
  program	
  
and	
  prevent	
  them	
  from	
  broaching	
  their	
  
respec-ve	
  boxes	
  (slices).	
  
– Absolute.	
  
– Says	
  nothing	
  about	
  what	
  happens	
  within	
  a	
  slice.	
  

•  FlowVisor	
  takes	
  this	
  approach.	
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Problem:	
  Very	
  Coarse-­‐grained	
  

•  1:	
  We	
  want	
  isola-on	
  and	
  seman-cs	
  preserving	
  
by	
  construc-on.	
  

•  2:	
  We	
  want	
  read-­‐only	
  slices.	
  
– Consider	
  an	
  admin/billing	
  slice	
  that	
  monitors	
  use.	
  	
  
Isola-on	
  is	
  too	
  strong,	
  but	
  without	
  isola-on,	
  what	
  
do	
  we	
  have?	
  

•  3:	
  Isola-on	
  as	
  modularity.	
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Limita-ons	
  

•  Isola-on	
  as	
  
modularity.	
  

•  Inter-­‐slice	
  
interac-on.	
  

•  Intra-­‐slice	
  seman-cs.	
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Splendid	
  	
  

Isolation 
HotSDN	
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  Schlesinger	
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   2 0 1 2 	
  

Jo in t 	
  work 	
  w i th : 	
  

D a v i d 	
  Wa l k e r 	
  S t e phen 	
  Gu t z 	
  
A l e c 	
   S t o r y 	
  
N a t e 	
   F o s t e r 	
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