
Splendid	 	

Isola-on	
HotSDN	 Cole	 Schlesinger	

Au g . 	 2 0 1 2 	

Jo in t 	 work 	 w i th : 	

S t e phen 	 Gu t z 	

36 www.cornelllogo.cornell.edu Revised March 2007

One-color printing

When only one-color printing is available, the insignia, logotype,
and name of college, school, or unit should be printed positive—in
black or Cornell Red.

The insignia, logotype, and name of college, school, or unit also can
be reversed out of any color to white, as shown.

36 www.cornelllogo.cornell.edu Revised March 2007

One-color printing

When only one-color printing is available, the insignia, logotype,
and name of college, school, or unit should be printed positive—in
black or Cornell Red.

The insignia, logotype, and name of college, school, or unit also can
be reversed out of any color to white, as shown.

A l e c 	 S t o r y 	 N a t e 	 F o s t e r 	

A	 Slice	 Abstrac-on	 for	 So4ware	 Defined	 Networks	

•  How	 does	 one	 read	 the	 state	 of	 the	 network?	
[Foster,	 et	 al.	 Frene-c:	 A	 Network	 Programming	 Language.	 	 ICFP	 ‘11.]	

•  How	 does	 one	 read	 the	 state	 of	 the	 network?	
[Foster,	 et	 al.	 Frene-c:	 A	 Network	 Programming	 Language.	 	 ICFP	 ‘11.]	

•  How	 does	 one	 write	 the	 state	 of	 the	 network?	
[ReitblaL,	 et	 al.	 	 Abstrac-ons	 for	 Network	 Update.	 	 SIGCOMM	 ’12]	

•  How	 does	 one	 read	 the	 state	 of	 the	 network?	
[Foster,	 et	 al.	 Frene-c:	 A	 Network	 Programming	 Language.	 	 ICFP	 ‘11.]	

•  How	 does	 one	 write	 the	 state	 of	 the	 network?	
[ReitblaL,	 et	 al.	 	 Abstrac-ons	 for	 Network	 Update.	 	 SIGCOMM	 ‘12]	

•  How	 does	 one	 define	 a	 new	 (virtual)	 network?	
[Coming	 soon!]	

•  How	 does	 one	 read	 the	 state	 of	 the	 network?	
[Foster,	 et	 al.	 Frene-c:	 A	 Network	 Programming	 Language.	 	 ICFP	 ‘11.]	

•  How	 does	 one	 write	 the	 state	 of	 the	 network?	
[ReitblaL,	 et	 al.	 	 Abstrac-ons	 for	 Network	 Update.	 	 SIGCOMM	 ‘12]	

•  How	 does	 one	 define	 a	 new	 (virtual)	 network?	
[Coming	 soon!]	

•  How	 does	 one	 compose	 two	 network	 programs?	
[This	 talk.]	

	

•  How	 does	 one	 compose	 two	 network	 programs?	

	

•  How	 does	 one	 compose	 two	 network	 programs?	

 Define	 a	 new	 slice	 abstrac-on.	
 Li4	 slices	 (and	 isola-on)	 into	
the	 language.	

Topology	

Data	 Center	 Isola-on	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

8	

Client	 1	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

9	

Policy	 1	

Client	 2	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

10	

Policy	 2	

Client	 1	 +	 Client	 2	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

Overlap	

Client	 2	

Client	 1	

11	

Policy	 2	 Policy	 1	 +	

Client	 2	 injects	 packets	 into	 Client	 1’s	 sec-on	 of	 the	 network!	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

Overlap	

Client	 2	

Client	 1	

12	

Policy	 2	 Policy	 1	 +	

Client	 2	 intercepts	 packets	 from	 Client	 1’s	 sec-on	 of	 the	 network!	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

Overlap	

Client	 2	

Client	 1	

13	

Policy	 2	 Policy	 1	 +	

Client	 1	 Client	 2	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

14	

Policy	 2	 Policy	 1	 |	

Our	 Approach	

•  Make	 isola-on	 part	 of	 the	 language.	
–  For	 security	 and	 modularity.	

•  Give	 each	 client	 a	 slice	 of	 the	 network	
which	 they	 can	 assume	 complete	 control	
over,	 as	 if	 they	 were	 alone	 on	 the	
network.	

•  Given	 a	 set	 of	 slices	 and	 a	 policy	 for	 each	
slice,	 compile	 them	 into	 one	 whole-‐
network	 program	 that	 enforces	 isola-on.	

15	

Slices	

16	

A2	 A1	

R1	 R2	 R3	

Slices	

17	

A2	 A1	

R1	 R2	 R3	

A2	 A1	

R1	 R2	

Slices	

18	

A2	 A1	

R1	 R2	 R3	

A2	 A1	

R1	 R2	

Predicate	 on	 incoming	 packets	

Predicate	 on	 outgoing	 packets	

Slices	

19	

A2	 A1	

R1	 R2	 R3	

A2	 A1	

R1	 R2	

Client	 1	 Client	 2	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

20	

Policy	 2	 Policy	 1	 |	

Slice	 1	 Slice	 2	

Isola-on	 as	 Modularity	

21	

C2	 C12	 C11	 C13	

Mul--‐part	
Controller	 Program	

Isola-on	 as	 Modularity	

22	

C2	 C12	 C11	 C13	

ARP	

Isola-on	 as	 Modularity	

23	

C2	 C12	 C11	 C13	

ARP	
MAC	 Learning	

Isola-on	 as	 Modularity	

24	

ARP	

Traffic	 Monitoring	

C2	 C12	 C11	 C13	

MAC	 Learning	

Implementa-on	

25	

B	 A2	 A1	 A3	 A4	

Input:	 a	 set	 of	 slices	 and	
NetCore	 policies.	
(Must	 be	 VLAN-‐independent.)	

Implementa-on	

26	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

Input:	 a	 set	 of	 slices	 and	
NetCore	 policies.	
(Must	 be	 VLAN-‐independent.)	

Implementa-on	

27	

N
et
Co

re
	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

Input:	 a	 set	 of	 slices	 and	
NetCore	 policies.	

Output:	 a	 single,	 global	
NetCore	 policy.	

Implementa-on	

28	

N
et
Co

re
	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

N O X , 	 N e W l e , 	 F l o o d l i g h t , 	
e t c . 	

Input:	 a	 set	 of	 slices	 and	
policies.	

Output:	 a	 single,	 global	
NetCore	 policy.	

(Must	 be	 VLAN-‐independent.)	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

29	

Controller	 1	 Controller	 2	

FlowVisor	

Verifica-on	

30	

A2	 A1	

Slice	 Compiler	

N
et
Co

re
	

A2	 A1	

Verifica-on	

31	

Model	 NetCore	
policies	 in	 SMT	 (Z3).	 1	 A2	 A1	

Slice	 Compiler	

N
et
Co

re
	

A2	 A1	

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Verifica-on	

32	

Verify	 isola-on.	 2	

A2	 A1	

Slice	 Compiler	

N
et
Co

re
	

A2	 A1	

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Model	 NetCore	
policies	 in	 SMT	 (Z3).	 1	

Verifica-on	

33	

Model	 NetCore	
policies	 in	 SMT	 (Z3).	 1	

Verify	 isola-on.	 2	

Verify	 seman-c	
equivalence.	 1	

≅	

A2	 A1	

Slice	 Compiler	

N
et
Co

re
	

A2	 A1	

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Contribu-ons	

•  A	 new	 language	 for	
slices.	

34	

B	 A2	 A1	 A3	 A4	

N
et
Co

re
	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

35	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

N O X , 	 N e W l e , 	 F l o o d l i g h t , 	
e t c . 	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

•  A	 verifier	 that	
guarantees:	

36	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

N
et
Co

re
	

B	 A3	 A4	 A2	 A1	

N O X , 	 N e W l e , 	 F l o o d l i g h t , 	
e t c . 	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

•  A	 verifier	 that	
guarantees:	
–  isola-on	

37	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

N
et
Co

re
	

B	 A3	 A4	 A2	 A1	

N O X , 	 N e W l e , 	 F l o o d l i g h t , 	
e t c . 	

Contribu-ons	

•  A	 new	 language	 for	
slices.	
–  Security	
– Modularity	

•  A	 compiler	 that	
enforces	 isola-on.	

•  A	 verifier	 that	
guarantees:	
–  isola-on,	 and	
–  seman-c	
equivalence.	

38	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

N
et
Co

re
	

B	 A3	 A4	 A2	 A1	

N O X , 	 N e W l e , 	 F l o o d l i g h t , 	
e t c . 	

≅	

3 9 	

Thank	
you!	 Read	 the	 paper:	

frene-c-‐lang.org/papers	

Get	 the	 code:	
github.com/frene-c-‐lang/netcore	

See	 the	 demo:	
Find	 me	 a4er	 the	 talk!	

We	 wish	 to	 thank	 Shrutarshi	 Basu,	 Arjun	 Guha,	 Josh	 Reich,	 Mark	 ReitblaL,	 Jennifer	 Rexford,	 and	 David	
Walker	 for	 many	 helpful	 comments	 and	 sugges-ons.	 	

THE	
END	

40	

Re-‐imagining	 the	 fundamentals	 of	 network	
implementa-on	 from	 a	 programming	 languages	 point	 of	
view:	
	
•  How	 does	 one	 read	 the	 state	 of	 the	 network?	
•  How	 does	 one	 write	 the	 state	 of	 the	 network?	
•  How	 does	 one	 define	 a	 new	 (virtual)	 network?	
•  How	 does	 one	 compose	 two	 network	 programs?	

Frene-c	 is	 a	 new	 programming	 language	 we	 are	 crea-ng	
to	 explore	 these	 ques-ons	 and	 more	

42	

T h e 	 S DN 	 C o n t r o l l e r 	

One	 program	 to 	
ru le 	 them	 	
a l l 	 … 	

NetCore:	 Program	 Composi-on	

PaWern	 AcZon	

inPort	 =	 2	 Forward	 1	

inPort	 =	 1	 Forward	 2	

43	

PaWern	 AcZon	

tpSrc	 =	 22	 Drop	

tpSrc	 =	 80	 Drop	

Repeater	 Monitor	

NetCore:	 Program	 Composi-on	

PaWern	 AcZon	

inPort	 =	 2	 Forward	 1	

inPort	 =	 1	 Forward	 2	

44	

PaWern	 AcZon	

tpSrc	 =	 22	 Drop	

tpSrc	 =	 80	 Drop	

Repeater	 Monitor	

Ne t Co r e 	

Repeater	 Monitor	

45	

S1	 S4	 S2	 S3	

S1	 S4	 S2	 S3	

S1	 S4	 S2	 S3	

VLAN-‐based	 Isola-on	

Slice	 Compiler	

46	

S1	 S4	 S2	 S3	

S1	 S4	 S2	 S3	

S1	 S4	 S2	 S3	

VLAN-‐based	 Isola-on	

VLAN=2	

VLAN=1	

Slice	 Compiler	

47	

S1	 S4	 S2	 S3	

S2	 S3	

S2	 S3	
VLAN=2	

VLAN=1	

VLAN-‐based	 Isola-on	

Slice	 Compiler	

Topology	

Data	 Center	 Isola-on	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

48	

Client	 1	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

49	

Controller	 1	

Client	 2	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

50	

Controller	 2	

Client	 1	 +	 Client	 2	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

Overlap	

Client	 2	

Client	 1	

51	

Controller	 2	 Controller	 1	 +	

Client	 2	 injects	 packets	 into	 Client	 1’s	 sec-on	 of	 the	 network!	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

Overlap	

Client	 2	

Client	 1	

52	

Controller	 2	 Controller	 1	 +	

Client	 2	 intercepts	 packets	 from	 Client	 1’s	 sec-on	 of	 the	 network!	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

Overlap	

Client	 2	

Client	 1	

53	

Controller	 2	 Controller	 1	 +	

Client	 1	 Client	 2	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

54	

Controller	 2	 Controller	 1	 |	

55	

Controller	 1	 Controller	 2	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

Hypervisor	

PORT == 80

PORT != 80

Isola-on	 as	 Modularity	

56	

B	 A2	 A1	 A3	 A4	

Mul--‐part	
Controller	 Program	

Isola-on	 as	 Modularity	

57	

B	 A2	 A1	 A3	 A4	

ARP	

Isola-on	 as	 Modularity	

58	

B	 A2	 A1	 A3	 A4	

ARP	
LLDP	

Isola-on	 as	 Modularity	

59	

B	 A2	 A1	 A3	 A4	

ARP	
LLDP	

NAT	

Isola-on	 as	 Modularity	

60	

B	 A2	 A1	 A3	 A4	

ARP	
LLDP	

NAT	

IP	 RouZng	

Read-‐only	 Slices	

61	

•  Network	 monitoring	
•  Usage-‐based	 billing	

B	 A	

Precise	 Seman-cs	

62	

Contribu-ons	

63	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

64	

B	 A2	 A1	 A3	 A4	

Slices	

65	

A2	 A1	

R1	 R2	 R3	

Slices	

66	

A2	 A1	

R1	 R2	 R3	

A2	 A1	

R1	 R2	

Slices	

67	

A2	 A1	

R1	 R2	 R3	

A2	 A1	

R1	 R2	

Slices	

68	

A2	 A1	

R1	 R2	 R3	

A2	 A1	

R1	 R2	

Programming	 with	 Slices	

69	

Ethernet	 type:	
0x0806	

Programming	 with	 Slices	

70	

Ethernet	 type:	
0x0806	

Ethernet	 type:	
0x0800	

Programming	 with	 Slices	

71	

Ethernet	 type:	
0x0806	

Ethernet	 type:	
0x0800	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

72	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

73	

S1	 S4	 S2	 S3	

S1	 S4	 S2	 S3	

S1	 S4	 S2	 S3	

VLAN-‐based	 Isola-on	

74	

S1	 S4	 S2	 S3	

S1	 S4	 S2	 S3	

S1	 S4	 S2	 S3	

VLAN-‐based	 Isola-on	

VLAN=2	

VLAN=1	

75	

S1	 S4	 S2	 S3	

S2	 S3	

S2	 S3	
VLAN=2	

VLAN=1	

VLAN-‐based	 Isola-on	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

76	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

N
et
Co

re
	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

77	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

N
et
Co

re
	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

78	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

N O X , 	 N e W l e , 	 F l o o d l i g h t , 	
e t c . 	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

•  A	 verifier	 that	
guarantees:	

79	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

•  A	 verifier	 that	
guarantees:	
–  isola-on	

80	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

•  A	 verifier	 that	
guarantees:	
–  isola-on,	 and	
–  seman-c	
equivalence.	

81	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

≅	

Verifying	 the	 Results	

82	

N
et
Co

re
	

B	 A3	 A4	 A2	 A1	

Encoded	 using	
SMT	 (Z3)	

Encoded	 using	
model	 checking	

(NuSMV)	

Contribu-ons	

•  A	 new	 language	 for	
slices.	

•  A	 compiler	 that	
enforces	 isola-on.	

•  A	 verifier	 that	
guarantees:	
–  isola-on,	 and	
–  seman-c	
equivalence.	

83	

B	 A2	 A1	 A3	 A4	

Slice	 Compiler	

B	 A3	 A4	 A2	 A1	

≅	

8 4 	

Thank	
you!	 Read	 the	 paper:	

frene-c-‐lang.org/papers	

Get	 the	 code:	
github.com/frene-c-‐lang/netcore	

85	

86	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

Integrity	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

1 Slice	 2	 cannot	 inject	 packets	 into	 Slice	 1.	

87	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

Integrity	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

1 Slice	 2	 cannot	 inject	 packets	 into	 Slice	 1.	

88	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

Integrity	

R1	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

A2	 A1	

R2	

1 Slice	 2	 cannot	 inject	 packets	 into	 Slice	 1.	

89	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

Integrity	

R1	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

A2	 A1	

R2	

1 Slice	 2	 cannot	 inject	 packets	 into	 Slice	 1.	

90	

Confiden-ality	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

Slice	 2	 cannot	 siphon	 packets	 from	 Slice	 1.	

91	

Confiden-ality	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

Slice	 2	 cannot	 siphon	 packets	 from	 Slice	 1.	

92	

Confiden-ality	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

Slice	 2	 cannot	 siphon	 packets	 from	 Slice	 1.	

93	

Confiden-ality	

A2	 A1	

R1	 R2	 R3	

H11	 H12	 H21	 H22	 H31	 H32	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

Slice	 2	 cannot	 siphon	 packets	 from	 Slice	 1.	

Establishing	 Isola-on	

•  Confiden-ality	 and	 integrity	 are	 global,	 end-‐
to-‐end	 proper-es.	

•  But	 we	 can	 establish	 isola-on	 by	 enforcing	
simple,	 local	 proper-es.	

94	

Implementa-on	

•  VLAN-‐based	 implementa-on.	

95	

Verifica-on	

•  SAT	 encoding	 (with	 Z3)	
•  Separate:	 given	 two	 compiled	 slices,	
guarantee	 that	 they	 are	 separate.	

•  SemanZcs-‐preserving:	 given	 a	 source	 slice	 +	
program	 and	 a	 compiled	 program,	 verify	 that	
they	 are	 seman-cally	 equivalent.	

96	

Read	 the	 paper:	
hLp://www.cs.princeton.edu/~cschlesi	
	
Download	 the	 code:	
hLps://github.com/frene-c-‐lang/netcore	

97	

98	

Isola-on	 as	 Modularity	

•  Queries/network	 monitoring.	
•  ARP	

99	

PORT	 !=	 80	

A2	 A1	

R2	 R3	

H22	 H31	 H32	

A2	 A1	

R1	 R2	

H11	 H12	 H21	

PORT	 ==	 80	

100	

Controller	 1	 Controller	 2	

One	 approach:	 like	 SFI	

•  Draw	 a	 box	 around	 each	 network	 program	
and	 prevent	 them	 from	 broaching	 their	
respec-ve	 boxes	 (slices).	
– Absolute.	
– Says	 nothing	 about	 what	 happens	 within	 a	 slice.	

•  FlowVisor	 takes	 this	 approach.	

101	

Problem:	 Very	 Coarse-‐grained	

•  1:	 We	 want	 isola-on	 and	 seman-cs	 preserving	
by	 construc-on.	

•  2:	 We	 want	 read-‐only	 slices.	
– Consider	 an	 admin/billing	 slice	 that	 monitors	 use.	 	
Isola-on	 is	 too	 strong,	 but	 without	 isola-on,	 what	
do	 we	 have?	

•  3:	 Isola-on	 as	 modularity.	

102	

Limita-ons	

•  Isola-on	 as	
modularity.	

•  Inter-‐slice	
interac-on.	

•  Intra-‐slice	 seman-cs.	

103	

?

B	 A	

ARP	 A2	 A3	 A4	

Splendid	 	

Isolation
HotSDN	 Cole	 Schlesinger	

Au g . 	 2 0 1 2 	

Jo in t 	 work 	 w i th : 	

D a v i d 	 Wa l k e r 	 S t e phen 	 Gu t z 	
A l e c 	 S t o r y 	
N a t e 	 F o s t e r 	

36 www.cornelllogo.cornell.edu Revised March 2007

One-color printing

When only one-color printing is available, the insignia, logotype,
and name of college, school, or unit should be printed positive—in
black or Cornell Red.

The insignia, logotype, and name of college, school, or unit also can
be reversed out of any color to white, as shown.

36 www.cornelllogo.cornell.edu Revised March 2007

One-color printing

When only one-color printing is available, the insignia, logotype,
and name of college, school, or unit should be printed positive—in
black or Cornell Red.

The insignia, logotype, and name of college, school, or unit also can
be reversed out of any color to white, as shown.

