Splendid
|solation

A Slice Abstraction for Software Defined Networks

Cole Schlesinger HotSDN

Aug. 2012

Joint work with:

Stephen Gutz Alec Story Nate Foster

frenetic >

e How does one read the state of the network?

[Foster, et al. Frenetic: A Network Programming Language. ICFP ‘11.]

frenetic >

e How does one read the state of the network?

[Foster, et al. Frenetic: A Network Programming Language. ICFP ‘11.]

* How does one write the state of the network?
[Reitblatt, et al. Abstractions for Network Update. SIGCOMM ’12]

frenetic >

e How does one read the state of the network?

[Foster, et al. Frenetic: A Network Programming Language. ICFP ‘11.]

* How does one write the state of the network?
[Reitblatt, et al. Abstractions for Network Update. SIGCOMM ‘12]

* How does one define a new (virtual) network?

[Coming soon!]

frenetic >

How does one read the state of the network?

[Foster, et al. Frenetic: A Network Programming Language. ICFP ‘11.]

How does one write the state of the network?
[Reitblatt, et al. Abstractions for Network Update. SIGCOMM ‘12]

How does one define a new (virtual) network?

[Coming soon!]

How does one compose two network programs?
[This talk.]

frenetic >

 How does one compose two network programs?

frenetic >

* How does one compose two network programs?

" Define a new slice abstraction.
= Lift slices (and isolation) into
the language.

Data Center Isolation

Topology

Policy 1

Client 1

Policy 2

Client 2

10

Policy 1

Policy 2

Client 1 + Client 2

11

Policy 1 + Policy 2

Client 2 injects packets into Client 1’s section of the network!

12

Policy 1 + Policy 2

Client 2 intercepts packets from Client 1’s section of the network!

13

Policy 1 I Policy 2

Client 1 Client 2

14

Our Approach

 Make isolation part of the language.

— For security and modularity.

* Give each client a slice of the network
which they can assume complete control
over, as if they were alone on the
network.

* Given a set of slices and a policy for each
slice, compile them into one whole-
network program that enforces isolation.

Slices

Slices

OO
¢ 9 e

topology

topo = nxtopo.NXTopo ()
topo.add_switch(name="R1"
topo.add_switch(name="R2"
topo.add_switch(name="A1"
topo.add_switch(name="A2"

,ports=[
,ports=[
,ports=1[
,ports=1[

17

Slices

(2) ()
G’?\Q

slice entries and exits
edges = [("R1", 1, tpDst 80, tpDst 80)
, ("R1", 2, tpDst 80, tpDst 80)
, ("R2", 1, tpDst 80, tpDst 80)]

-

Predicate on incoming packets

Predicate on outgoing packets 18

Slices

slice constructor
slice = Slice(topo,phys_topo,edges)

19

Policy 1 I Policy 2

Slice 1 Slice 2

Client 1 Client 2

20

Isolation as Modularity

| =]
| ————4-—-=--L----
|
Multi-part

Controller Program

21

Isolation as Modularity

ARP -

22

Isolation as Modularity

ARP -
MAC Learning °

23

Isolation as Modularity

ARP -
MAC Learning °

Traffic Monitoring *

Implementation

Input: t of slices and I I I
B o | |||E|!!E|!!E|!!E|uuu

NetCore policies. ' —=— _—_ —— _'—=__—=—=_

(Must be VLAN-independent.)

25

Implementation

Input: t of slices and I I I
B o | |||E|!!E|!!E|!!E|uuu

NetCore policies. ' —=— _—_ —— _'—=__—=—=_

(Must be VLAN-independent.) .

Slice Compiler

26

Implementation

Input: a set of slices and I I I
y |||Z|!!|Z|!!E|!!E|uuu

NetCore policies. e e e D e e =

Slice Compiler

|

Output: a single, global
NetCore policy.

NetCore

27

Implementation

Input: a set of slices and |

. I [ad 1 [&) 1 B
policies. ! =A|:l --=|§|=-- I=Z°‘I=--=|§|=""= = |
(Must be VLAN-independent.) .

Slice Compiler

|

NOX, Nettle, Floodlight,
etc.

Output: a single, global
NetCore policy.

NetCore

28

| |
I Controller 1 I
| |

| |
I Controller 2 I
| |

FlowVisor

29

Verification

IZI!!IZI::

(NetCore)

Verification

Model NetCore b A & (
policies in SMT (Z3). |

31

Verification

| |

Model NetCore
policies in SMT (Z3).

g Verify isolation.

:¢/\l¢; |||Z|"E|u

32

Verification

Model NetCore

policies in SMT (Z3).

Verify isolation.

Verify semantic
equivalence.

Slice Compiler

R

NetCore
&
>

33

Contributions

A new language for u I u
sHas H]HELW]HEMH"H

slices. = == = ==

34

Contributions

A new language for u I u
sHas |||Z|!!|Z|!!E|!!E|uuu

slices. =8 == BT]

* A compiler that < b
enforces isolation.

Slice Compiler

|

NOX, Nettle, Floodlight,
etc.

NetCore

35

Contributions

A new language for u I u
sHas |||Z|!!E|!!E|!!E|uuu

slices. s = e = ==

* A compiler that < b
enforces isolation.

e A verifier that
guarantees: ‘

}

NOX, Nettle, Floodlight,
etc.

Slice Compiler

NetCore

36

Contributions

A new language for u I u
sHas |||Z|!!E|!!E|!!E|uuu

slices. e DL DT
* A compiler that < b

enforces isolation.
e A verifier that

guarantees: ‘

— jisolation

Slice Compiler

|

1 1 1 |
NOX, Nettle, Floodlight,
etc.

P

|
) ——
NetCore

37

Contributions

* A new language for I ||

slices. :: [2] !! (2] !! [!! [ad o Led

— Security

— Modularity ‘
* A compiler that

enforces isolation.

A verifier that "

guarantees:
AAAA J

IR

Slice Compiler

— isolation, and

_ 1 NOX, Nettle, FI dlight,
sem.antlc ctle, Floo
equivalence.

NetCore

38

Thank
you ! Read the paper:

frenetic-lang.org/papers

Get the code:

github.com/frenetic-lang/netcore

See the demo:
Find me after the talk!

We wish to thank Shrutarshi Basu, Arjun Guha, Josh Reich, Mark Reitblatt, Jennifer Rexford, and David
Walker for many helpful comments and suggestions.

END

frenetic >

Re-imagining the fundamentals of network
implementation from a programming languages point of
view:

* How does one read the state of the network?
* How does one write the state of the network?
* How does one define a new (virtual) network?
 How does one compose two network programs?

Frenetic is a new programming language we are creating
to explore these questions and more

One program to
rule them
all ...

42

NetCore: Program Composition

Repeater
inPort =2 Forward 1
inPort=1 Forward 2

Monitor
tpSrc =22 Drop

tpSrc = 80 Drop

43

NetCore: Program Composition

Repeater Monitor
Patten |Acion [lPattern |Action
inPort =2 Forward 1 tpSrc =22 Drop
inPort=1 Forward 2 tpSrc = 80 Drop
NetCore
Repeater Monitor
inPort 2 ==> forward [1] <+> tpSrc 22 ==> Query_1 <+>

inPort 1 ==> forward [2] tpSrc 80 ==> Query_2

44

VLAN-based Isolation
 siceCompilr |

VLAN-based Isolation

VLAN-based Isolation
 siceCompilr |

VLAN=2

VLAN=1

Data Center Isolation

Topology

48

Controller 1

Client 1

49

Controller 2

Client 2

50

Controller 1 + Controller 2

Client 1 + Client 2

51

Controller 1 + Controller 2

Client 2 injects packets into Client 1’s section of the network!

52

Controller 1 + Controller 2

Client 2 intercepts packets from Client 1’s section of the network!

53

Controller 1 I Controller 2

Client 1 Client 2

54

| Il |
[Controller 1 [Controller 2 I
| (- |

PORT == 80
PORT != 80

55

Isolation as Modularity

Multi-part
Controller Program

56

Isolation as Modularity

ARP"

Isolation as Modularity

Isolation as Modularity

Isolation as Modularity

NAT-
IP Routing

60

Read-only Slices

 Network monitoring
* Usage-based billing

Precise Semantics

62

Contributions

Contributions

A new language for u I u
sHas H]HELW]HEMH"H

slices. = == = ==

64

Slices

Slices

topology

topo = nxtopo.NXTopo ()
topo.add_switch(name="R1"
topo.add_switch(name="R2"
topo.add_switch(name="A1"
topo.add_switch(name="A2"

,ports=
,ports=
,ports=
,ports=

e

-

-

-

-

NN WN
T

-

— N W

—_d

~ B

66

-
./

Slices

slice entries and exits
edges = \
([(p, Top(), Top()) for p in
topo.edge_ports("R1") 1 +
[(p, Top(O), Top()) for p in
topo.edge_ports("R2") 1)

67

Slices

slice constructor
slice = Slice(topo,phys_topo,edges)

68

Programming with Slices

Ethernet type:

ARP module 0x0806
arp_slice = Slice(phys_topo, phys_topo, arp_edges)
arp_policy = gen_arp_policy(arp_slice)

69

Programming with Slices

Ethernet type:
ARP module 0x0806
arp_slice = Slice(phys_topo, phys_topo, arp_edges)
arp_policy = gen_arp_policy(arp_slice)
Ethernet type:
IP module 0x0800

ip_slice = Slice(phys_topo, phys_topo, ip_edges)
ip_policy = gen_routing_policy(ip_slice)

70

Programming with Slices

Ethernet type:
ARP module 0x0806
arp_slice = Slice(phys_topo, phys_topo, arp_edges)
arp_policy = gen_arp_policy(arp_slice)
Ethernet type:
IP module 0x0800

ip_slice = Slice(phys_topo, phys_topo, ip_edges)

ip_policy = gen_routing_policy(ip_slice)

Network-wide policy

slices = [(arp_slice, arp_policy), (ip_slice, ip_policy)]
whole_policy = compile(slices)

71

Contributions

* A new language for I u

slices. :: [al v [ad v [ad v [ad 4 Bl

* A compiler that < b
enforces isolation.

Slice Compiler

72

VLAN-based Isolation

VLAN-based Isolation

VLAN-based Isolation

VLAN=2

VLAN=1

Contributions

* A new language for I u

slices. :: [a] o [ad v [ad v [ad 4 Bl

* A compiler that < b
enforces isolation.

Slice Compiler

\ 4

76

Contributions

A new language for u I u
sHas |||Z|!!|Z|!!E|!!E|uuu

slices. =8 == BT]

* A compiler that < b
enforces isolation.

Slice Compiler

|

NetCore

77

Contributions

A new language for u I u
sHas |||Z|!!|Z|!!E|!!E|uuu

slices. =8 == BT]

* A compiler that < b
enforces isolation.

Slice Compiler

|

NOX, Nettle, Floodlight,
etc.

NetCore

78

Contributions

A new language for u I u
sHas |||Z|!!E|!!E|!!E|uuu

slices. = == = ==

* A compiler that < b
enforces isolation.

e A verifier that
guarantees: ‘

Slice Compiler

79

Contributions

* A new language for u I u

|||E|"E|!!E|!!E|uu B

slices. —__ = = = ==

* A compiler that < b
enforces isolation.

e A verifier that
guarantees: ‘

— isolation e .

80

Contributions

A new language for u I u
sHas WIZI!!IZI!!IZMEI"""

slices. = == = ==

* A compiler that < b
enforces isolation.

e A verifier that

IR
Sl
—
®
0
®)
3
=
)
=

guarantees: ‘
— isolation, and s Mt e ,
— semantic | afafalal B i

equivalence.

81

Verifying the Results

\
ded usi
e
/

Encoded using
model checking
(NuSMV)

82

"NetCore

Contributions

A new language for u I u
sHas WIZI!!IZI!!IZMEI"""

slices. = == = ==

* A compiler that < b
enforces isolation.

e A verifier that

IR
Sl
—
®
0
®)
3
=
)
=

guarantees: ‘
— isolation, and s Mt e ,
— semantic | afafalal B i

equivalence.

83

Thank
you ! Read the paper:

frenetic-lang.org/papers

Get the code:

github.com/frenetic-lang/netcore

85

Integrity

t’ Slice 2 cannot inject packets into Slice 1.

86

Integrity

t’ Slice 2 cannot inject packets into Slice 1.

87

Integrity

t’ Slice 2 cannot inject packets into Slice 1.

88

Integrity

t’ Slice 2 cannot inject packets into Slice 1.

89

Confidentiality

° Slice 2 cannot siphon packets from Slice 1.

90

Confidentiality

° Slice 2 cannot siphon packets from Slice 1.

91

Confidentiality

° Slice 2 cannot siphon packets from Slice 1.

92

Confidentiality

° Slice 2 cannot siphon packets from Slice 1.

Establishing Isolation

* Confidentiality and integrity are global, end-
to-end properties.

* But we can establish isolation by enforcing
simple, local properties.

Implementation

* VLAN-based implementation.

Verification

e SAT encoding (with Z3)

e Separate: given two compiled slices,
guarantee that they are separate.

* Semantics-preserving: given a source slice +
program and a compiled program, verify that
they are semantically equivalent.

Read the paper:
http://www.cs.princeton.edu/~cschlesi

Download the code:
https://github.com/frenetic-lang/netcore

97

98

Isolation as Modularity

* Queries/network monitoring.
* ARP

| | | |
I Controller 1 I I Controller 2 I
| | ’ | |

PORT == 80 PORT !=80

100

One approach: like SFI

* Draw a box around each network program
and prevent them from broaching their
respective boxes (slices).

— Absolute.
— Says nothing about what happens within a slice.

* FlowVisor takes this approach.

Problem: Very Coarse-grained

* 1: We want isolation and semantics preserving
by construction.

e 2: We want read-only slices.

— Consider an admin/billing slice that monitors use.
Isolation is too strong, but without isolation, what
do we have?

* 3:[|solation as modularity.

Limitations

Isolation as !
, ::uun::
modularity. ==, =
. I I I
Inter-slice R "
interaction. e T

Intra-slice semantics. Y

103

Splendid
Isolation

Cole Schlesinger HotSDN

Aug. 2012

Joint work with:

Stephen Gutz David Walker
Alec Story

Nate Foster

