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•  How	  does	  one	  compose	  two	  network	  programs?	  

 Define	  a	  new	  slice	  abstrac-on.	  
 Li4	  slices	  (and	  isola-on)	  into	  
the	  language.	  
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Our	  Approach	  

•  Make	  isola-on	  part	  of	  the	  language.	  
–  For	  security	  and	  modularity.	  

•  Give	  each	  client	  a	  slice	  of	  the	  network	  
which	  they	  can	  assume	  complete	  control	  
over,	  as	  if	  they	  were	  alone	  on	  the	  
network.	  

•  Given	  a	  set	  of	  slices	  and	  a	  policy	  for	  each	  
slice,	  compile	  them	  into	  one	  whole-‐
network	  program	  that	  enforces	  isola-on.	  
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Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.
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The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [? ]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [? ].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [? ], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [? ].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [? ], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [? ], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

# don’t forward lldp packets
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modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.
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The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [? ]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [? ].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [? ], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [? ].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [? ], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [? ], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

# don’t forward lldp packets
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Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.
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The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [? ]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [? ].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [? ], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [? ].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [? ], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [? ], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

# don’t forward lldp packets
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In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
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The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [? ]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [? ].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [? ], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [? ].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [? ], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [? ], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

# don’t forward lldp packets
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Thank	  
you!	   Read	  the	  paper:	  

frene-c-‐lang.org/papers	  

Get	  the	  code:	  
github.com/frene-c-‐lang/netcore	  

See	  the	  demo:	  
Find	  me	  a4er	  the	  talk!	  

We	  wish	  to	  thank	  Shrutarshi	  Basu,	  Arjun	  Guha,	  Josh	  Reich,	  Mark	  ReitblaL,	  Jennifer	  Rexford,	  and	  David	  
Walker	  for	  many	  helpful	  comments	  and	  sugges-ons.	  	  



THE	  
END	  

40	  



Re-‐imagining	  the	  fundamentals	  of	  network	  
implementa-on	  from	  a	  programming	  languages	  point	  of	  
view:	  
	  
•  How	  does	  one	  read	  the	  state	  of	  the	  network?	  
•  How	  does	  one	  write	  the	  state	  of	  the	  network?	  
•  How	  does	  one	  define	  a	  new	  (virtual)	  network?	  
•  How	  does	  one	  compose	  two	  network	  programs?	  

Frene-c	  is	  a	  new	  programming	  language	  we	  are	  crea-ng	  
to	  explore	  these	  ques-ons	  and	  more	  
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Contribu-ons	  
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•  A	  compiler	  that	  
enforces	  isola-on.	  
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Verifying	  the	  Results	  
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Thank	  
you!	   Read	  the	  paper:	  

frene-c-‐lang.org/papers	  

Get	  the	  code:	  
github.com/frene-c-‐lang/netcore	  
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Establishing	  Isola-on	  

•  Confiden-ality	  and	  integrity	  are	  global,	  end-‐
to-‐end	  proper-es.	  

•  But	  we	  can	  establish	  isola-on	  by	  enforcing	  
simple,	  local	  proper-es.	  
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Implementa-on	  

•  VLAN-‐based	  implementa-on.	  
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Verifica-on	  

•  SAT	  encoding	  (with	  Z3)	  
•  Separate:	  given	  two	  compiled	  slices,	  
guarantee	  that	  they	  are	  separate.	  

•  SemanZcs-‐preserving:	  given	  a	  source	  slice	  +	  
program	  and	  a	  compiled	  program,	  verify	  that	  
they	  are	  seman-cally	  equivalent.	  
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Read	  the	  paper:	  
hLp://www.cs.princeton.edu/~cschlesi	  
	  
Download	  the	  code:	  
hLps://github.com/frene-c-‐lang/netcore	  
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Isola-on	  as	  Modularity	  

•  Queries/network	  monitoring.	  
•  ARP	  
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PORT	  !=	  80	  
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One	  approach:	  like	  SFI	  

•  Draw	  a	  box	  around	  each	  network	  program	  
and	  prevent	  them	  from	  broaching	  their	  
respec-ve	  boxes	  (slices).	  
– Absolute.	  
– Says	  nothing	  about	  what	  happens	  within	  a	  slice.	  

•  FlowVisor	  takes	  this	  approach.	  
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Problem:	  Very	  Coarse-‐grained	  

•  1:	  We	  want	  isola-on	  and	  seman-cs	  preserving	  
by	  construc-on.	  

•  2:	  We	  want	  read-‐only	  slices.	  
– Consider	  an	  admin/billing	  slice	  that	  monitors	  use.	  	  
Isola-on	  is	  too	  strong,	  but	  without	  isola-on,	  what	  
do	  we	  have?	  

•  3:	  Isola-on	  as	  modularity.	  
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Limita-ons	  

•  Isola-on	  as	  
modularity.	  

•  Inter-‐slice	  
interac-on.	  

•  Intra-‐slice	  seman-cs.	  
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Splendid	  	  

Isolation 
HotSDN	  Cole	  Schlesinger	  

Au g . 	   2 0 1 2 	  

Jo in t 	  work 	  w i th : 	  

D a v i d 	  Wa l k e r 	  S t e phen 	  Gu t z 	  
A l e c 	   S t o r y 	  
N a t e 	   F o s t e r 	  
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