
Splendid	
 	

Isola-on	

HotSDN	
 Cole	
 Schlesinger	

Au g . 	
 2 0 1 2 	

Jo in t 	
 work 	
 w i th : 	

S t e phen 	
 Gu t z 	

36 www.cornelllogo.cornell.edu Revised March 2007

One-color printing

When only one-color printing is available, the insignia, logotype,
and name of college, school, or unit should be printed positive—in
black or Cornell Red.

The insignia, logotype, and name of college, school, or unit also can
be reversed out of any color to white, as shown.

36 www.cornelllogo.cornell.edu Revised March 2007

One-color printing

When only one-color printing is available, the insignia, logotype,
and name of college, school, or unit should be printed positive—in
black or Cornell Red.

The insignia, logotype, and name of college, school, or unit also can
be reversed out of any color to white, as shown.

A l e c 	
 S t o r y 	
 N a t e 	
 F o s t e r 	

A	
 Slice	
 Abstrac-on	
 for	
 So4ware	
 Defined	
 Networks	

•  How	
 does	
 one	
 read	
 the	
 state	
 of	
 the	
 network?	

[Foster,	
 et	
 al.	
 Frene-c:	
 A	
 Network	
 Programming	
 Language.	
 	
 ICFP	
 ‘11.]	

•  How	
 does	
 one	
 read	
 the	
 state	
 of	
 the	
 network?	

[Foster,	
 et	
 al.	
 Frene-c:	
 A	
 Network	
 Programming	
 Language.	
 	
 ICFP	
 ‘11.]	

•  How	
 does	
 one	
 write	
 the	
 state	
 of	
 the	
 network?	

[ReitblaL,	
 et	
 al.	
 	
 Abstrac-ons	
 for	
 Network	
 Update.	
 	
 SIGCOMM	
 ’12]	

•  How	
 does	
 one	
 read	
 the	
 state	
 of	
 the	
 network?	

[Foster,	
 et	
 al.	
 Frene-c:	
 A	
 Network	
 Programming	
 Language.	
 	
 ICFP	
 ‘11.]	

•  How	
 does	
 one	
 write	
 the	
 state	
 of	
 the	
 network?	

[ReitblaL,	
 et	
 al.	
 	
 Abstrac-ons	
 for	
 Network	
 Update.	
 	
 SIGCOMM	
 ‘12]	

•  How	
 does	
 one	
 define	
 a	
 new	
 (virtual)	
 network?	

[Coming	
 soon!]	

•  How	
 does	
 one	
 read	
 the	
 state	
 of	
 the	
 network?	

[Foster,	
 et	
 al.	
 Frene-c:	
 A	
 Network	
 Programming	
 Language.	
 	
 ICFP	
 ‘11.]	

•  How	
 does	
 one	
 write	
 the	
 state	
 of	
 the	
 network?	

[ReitblaL,	
 et	
 al.	
 	
 Abstrac-ons	
 for	
 Network	
 Update.	
 	
 SIGCOMM	
 ‘12]	

•  How	
 does	
 one	
 define	
 a	
 new	
 (virtual)	
 network?	

[Coming	
 soon!]	

•  How	
 does	
 one	
 compose	
 two	
 network	
 programs?	

[This	
 talk.]	

	

•  How	
 does	
 one	
 compose	
 two	
 network	
 programs?	

	

•  How	
 does	
 one	
 compose	
 two	
 network	
 programs?	

 Define	
 a	
 new	
 slice	
 abstrac-on.	

 Li4	
 slices	
 (and	
 isola-on)	
 into	

the	
 language.	

Topology	

Data	
 Center	
 Isola-on	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

8	

Client	
 1	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

9	

Policy	
 1	

Client	
 2	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

10	

Policy	
 2	

Client	
 1	
 +	
 Client	
 2	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

Overlap	

Client	
 2	

Client	
 1	

11	

Policy	
 2	
 Policy	
 1	
 +	

Client	
 2	
 injects	
 packets	
 into	
 Client	
 1’s	
 sec-on	
 of	
 the	
 network!	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

Overlap	

Client	
 2	

Client	
 1	

12	

Policy	
 2	
 Policy	
 1	
 +	

Client	
 2	
 intercepts	
 packets	
 from	
 Client	
 1’s	
 sec-on	
 of	
 the	
 network!	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

Overlap	

Client	
 2	

Client	
 1	

13	

Policy	
 2	
 Policy	
 1	
 +	

Client	
 1	
 Client	
 2	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

14	

Policy	
 2	
 Policy	
 1	
 |	

Our	
 Approach	

•  Make	
 isola-on	
 part	
 of	
 the	
 language.	

–  For	
 security	
 and	
 modularity.	

•  Give	
 each	
 client	
 a	
 slice	
 of	
 the	
 network	

which	
 they	
 can	
 assume	
 complete	
 control	

over,	
 as	
 if	
 they	
 were	
 alone	
 on	
 the	

network.	

•  Given	
 a	
 set	
 of	
 slices	
 and	
 a	
 policy	
 for	
 each	

slice,	
 compile	
 them	
 into	
 one	
 whole-­‐
network	
 program	
 that	
 enforces	
 isola-on.	

15	

Slices	

16	

A2	
 A1	

R1	
 R2	
 R3	

Slices	

17	

A2	
 A1	

R1	
 R2	
 R3	

A2	
 A1	

R1	
 R2	

Slices	

18	

A2	
 A1	

R1	
 R2	
 R3	

A2	
 A1	

R1	
 R2	

Predicate	
 on	
 incoming	
 packets	

Predicate	
 on	
 outgoing	
 packets	

Slices	

19	

A2	
 A1	

R1	
 R2	
 R3	

A2	
 A1	

R1	
 R2	

Client	
 1	
 Client	
 2	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

20	

Policy	
 2	
 Policy	
 1	
 |	

Slice	
 1	
 Slice	
 2	

Isola-on	
 as	
 Modularity	

21	

C2	
 C12	
 C11	
 C13	

Mul--­‐part	

Controller	
 Program	

Isola-on	
 as	
 Modularity	

22	

C2	
 C12	
 C11	
 C13	

ARP	

Isola-on	
 as	
 Modularity	

23	

C2	
 C12	
 C11	
 C13	

ARP	

MAC	
 Learning	

Isola-on	
 as	
 Modularity	

24	

ARP	

Traffic	
 Monitoring	

C2	
 C12	
 C11	
 C13	

MAC	
 Learning	

Implementa-on	

25	

B	
 A2	
 A1	
 A3	
 A4	

Input:	
 a	
 set	
 of	
 slices	
 and	

NetCore	
 policies.	

(Must	
 be	
 VLAN-­‐independent.)	

Implementa-on	

26	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

Input:	
 a	
 set	
 of	
 slices	
 and	

NetCore	
 policies.	

(Must	
 be	
 VLAN-­‐independent.)	

Implementa-on	

27	

N
et
Co

re
	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

Input:	
 a	
 set	
 of	
 slices	
 and	

NetCore	
 policies.	

Output:	
 a	
 single,	
 global	

NetCore	
 policy.	

Implementa-on	

28	

N
et
Co

re
	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

N O X , 	
 N e W l e , 	
 F l o o d l i g h t , 	

e t c . 	

Input:	
 a	
 set	
 of	
 slices	
 and	

policies.	

Output:	
 a	
 single,	
 global	

NetCore	
 policy.	

(Must	
 be	
 VLAN-­‐independent.)	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

29	

Controller	
 1	
 Controller	
 2	

FlowVisor	

Verifica-on	

30	

A2	
 A1	

Slice	
 Compiler	

N
et
Co

re
	

A2	
 A1	

Verifica-on	

31	

Model	
 NetCore	

policies	
 in	
 SMT	
 (Z3).	
 1	
 A2	
 A1	

Slice	
 Compiler	

N
et
Co

re
	

A2	
 A1	

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Verifica-on	

32	

Verify	
 isola-on.	
 2	

A2	
 A1	

Slice	
 Compiler	

N
et
Co

re
	

A2	
 A1	

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Model	
 NetCore	

policies	
 in	
 SMT	
 (Z3).	
 1	

Verifica-on	

33	

Model	
 NetCore	

policies	
 in	
 SMT	
 (Z3).	
 1	

Verify	
 isola-on.	
 2	

Verify	
 seman-c	

equivalence.	
 1	

≅	

A2	
 A1	

Slice	
 Compiler	

N
et
Co

re
	

A2	
 A1	

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Splendid Isolation: Language-Based Security
for Software-Defined Networks

Cole Schlesinger
Princeton

Alec Story
Cornell

Stephen Gutz
Cornell

Nate Foster
Cornell

David Walker
Princeton

Abstract
In many settings, including the college campus, the enterprise, the
military, and in the datacenter, networks must be shared: numerous
entities send and receive many different types of traffic over the
same underlying hardware. This paper analyzes the fundamental
problem of how to program such networks in a secure and reliable
manner. Our solution involves the development of a new program-
ming model that supports the concept of a network slice. Slices act
to isolate the traffic of one program from another, and also to iso-
late one type of traffic within a program from other traffic within
that same program. Consequently, slices bring a critical form of
modularity to network programming that has long been absent. We
develop a semantics for slices, illustrate the new kinds of formal
modular reasoning principles that network programmers can now
exploit, provide definitions of the end-to-end security properties
that slices entail and prove the correctness of a compiler for an
idealized core calculus for slice-based network programming. We
also describe our implementation, which comes equipped with a
translation validation framework that automatically verifies com-
piled programs using the Z3 theorem prover.

1. Introduction
� ^ �0

 ^ 0

The security of many systems depends on keeping one part
of a network isolated from another. For example, to protect stu-
dent records, universities often use the network to restrict access
to administrative machines; many military and intelligence orga-
nizations mandate an “airgap” between devices that process traffic
classified at different levels of confidentiality; in multi-tenant data-
centers, service-level agreements stipulate that traffic must not flow
between the virtual machines leased by different customers. Infor-
mally, we define isolation as a pair of properties: (1) confidentiality,
a desire to avoid revealing information about one’s own network
traffic to others, and (2) integrity, a desire to exclude the network
traffic of others from your systems.

Unfortunately, implementing isolation in networks today is
challenging. It requires manually configuring a large set of devices
including routers, switches, and firewalls, in a way that blocks
forbidden traffic but allows other traffic to traverse the network un-
hindered. Developing and maintaining these configurations, which
must be expressed using low-level and vendor-specific configura-
tion languages, is tedious work for network operators and mistakes
are frequent. Simple errors can (and often do) lead to serious secu-
rity breaches. These concerns are not hypothetical: an FBI investi-
gation found that a recent break-in at the NASDAQ stock exchange
was due in part to a misconfigured firewall [?]; a survey of atten-
dees at the 2011 DEFCON conference found that networks are “the

easiest IT resource to exploit” and “are misconfigured more than
three quarters of the time” [?].

A much better approach would be to use a high-level program-
ming language that made it easy to describe forwarding policies and
construct isolated subnetworks, while leaving the tedious, error-
prone work of generating correct and efficient low-level configura-
tions to a compiler. These languages could be designed to make it
easy to reason about important security properties such as confiden-
tiality, integrity or access control, and they could be accompanied
by mechanical verification tools for checking those properties au-
tomatically. Unfortunately, this approach, while attractive in princi-
ple, has been difficult to realize because networks have traditionally
been built out of closed devices that cannot be programmed, except
through proprietary and idiosyncratic interfaces.

Remarkably, this practical limitation has begun to disappear
in recent years with the emergence of software-defined networks
(SDNs). In an SDN, a controller machine manages a collection of
programmable switches. The controller defines the forwarding pol-
icy for the network and configures the switches through an open
and standard interface. The switches implement the policy using ef-
ficient packet-processing hardware. Many commercial switch ven-
dors (including IBM, HP, NEC, Dell, Netgear, Juniper, Brocade,
Broadcom, and others) already support SDN platforms such as
OpenFlow [?], and prominent organizations including Google and
Internet2 have built production networks based on OpenFlow [?].

But although SDNs make it possible to control the behavior of
the network in software, current platforms do not make it easy to
write program that work on isolated subnetworks. NOX [?], one
of the first SDN platforms, provides only a thin veneer over the
underlying hardware, so programmers must manage switch-level
resources such as forwarding rules and virtual LANs (VLANs) by
hand. To ensure isolation, programmers must establish and main-
tain their own ad hoc conventions without compiler support. For
example, if two independently-developed NOX programs wish to
share a network, they must agree on some protocol to keep the
traffic of the two networks separate, and NOX provides no help
in ensuring that such agreements will be implemented correctly.
NetCore [?], another language for programming SDNs, also lacks
constructs for expressing or enforcing isolation properties.

Besides needing isolation for security, one often wants to iso-
late the behavior of several modules within a single program. Here
again, languages like NOX and NetCore are no help. For example,
the NOX tutorial explains how to develop a basic Ethernet learning
switch module that learns the association of Ethernet addresses to
switch port numbers. However, the learning switch must also oper-
ate side-by-side with another module that discovers the topology of
the network by probing the network with LLDP packets. To avoid
disrupting the discovery module, the learning switch code includes
explicit instructions to ignore LLDP packets:

don’t forward lldp packets

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

34	

B	
 A2	
 A1	
 A3	
 A4	

N
et
Co

re
	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

35	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

N O X , 	
 N e W l e , 	
 F l o o d l i g h t , 	

e t c . 	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

•  A	
 verifier	
 that	

guarantees:	

36	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

N
et
Co

re
	

B	
 A3	
 A4	
 A2	
 A1	

N O X , 	
 N e W l e , 	
 F l o o d l i g h t , 	

e t c . 	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

•  A	
 verifier	
 that	

guarantees:	

–  isola-on	

37	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

N
et
Co

re
	

B	
 A3	
 A4	
 A2	
 A1	

N O X , 	
 N e W l e , 	
 F l o o d l i g h t , 	

e t c . 	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

–  Security	

– Modularity	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

•  A	
 verifier	
 that	

guarantees:	

–  isola-on,	
 and	

–  seman-c	

equivalence.	

38	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

N
et
Co

re
	

B	
 A3	
 A4	
 A2	
 A1	

N O X , 	
 N e W l e , 	
 F l o o d l i g h t , 	

e t c . 	

≅	

3 9 	

Thank	

you!	
 Read	
 the	
 paper:	

frene-c-­‐lang.org/papers	

Get	
 the	
 code:	

github.com/frene-c-­‐lang/netcore	

See	
 the	
 demo:	

Find	
 me	
 a4er	
 the	
 talk!	

We	
 wish	
 to	
 thank	
 Shrutarshi	
 Basu,	
 Arjun	
 Guha,	
 Josh	
 Reich,	
 Mark	
 ReitblaL,	
 Jennifer	
 Rexford,	
 and	
 David	

Walker	
 for	
 many	
 helpful	
 comments	
 and	
 sugges-ons.	
 	

THE	

END	

40	

Re-­‐imagining	
 the	
 fundamentals	
 of	
 network	

implementa-on	
 from	
 a	
 programming	
 languages	
 point	
 of	

view:	

	

•  How	
 does	
 one	
 read	
 the	
 state	
 of	
 the	
 network?	

•  How	
 does	
 one	
 write	
 the	
 state	
 of	
 the	
 network?	

•  How	
 does	
 one	
 define	
 a	
 new	
 (virtual)	
 network?	

•  How	
 does	
 one	
 compose	
 two	
 network	
 programs?	

Frene-c	
 is	
 a	
 new	
 programming	
 language	
 we	
 are	
 crea-ng	

to	
 explore	
 these	
 ques-ons	
 and	
 more	

42	

T h e 	
 S DN 	
 C o n t r o l l e r 	

One	
 program	
 to 	

ru le 	
 them	
 	

a l l 	
 … 	

NetCore:	
 Program	
 Composi-on	

PaWern	
 AcZon	

inPort	
 =	
 2	
 Forward	
 1	

inPort	
 =	
 1	
 Forward	
 2	

43	

PaWern	
 AcZon	

tpSrc	
 =	
 22	
 Drop	

tpSrc	
 =	
 80	
 Drop	

Repeater	
 Monitor	

NetCore:	
 Program	
 Composi-on	

PaWern	
 AcZon	

inPort	
 =	
 2	
 Forward	
 1	

inPort	
 =	
 1	
 Forward	
 2	

44	

PaWern	
 AcZon	

tpSrc	
 =	
 22	
 Drop	

tpSrc	
 =	
 80	
 Drop	

Repeater	
 Monitor	

Ne t Co r e 	

Repeater	
 Monitor	

45	

S1	
 S4	
 S2	
 S3	

S1	
 S4	
 S2	
 S3	

S1	
 S4	
 S2	
 S3	

VLAN-­‐based	
 Isola-on	

Slice	
 Compiler	

46	

S1	
 S4	
 S2	
 S3	

S1	
 S4	
 S2	
 S3	

S1	
 S4	
 S2	
 S3	

VLAN-­‐based	
 Isola-on	

VLAN=2	

VLAN=1	

Slice	
 Compiler	

47	

S1	
 S4	
 S2	
 S3	

S2	
 S3	

S2	
 S3	

VLAN=2	

VLAN=1	

VLAN-­‐based	
 Isola-on	

Slice	
 Compiler	

Topology	

Data	
 Center	
 Isola-on	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

48	

Client	
 1	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

49	

Controller	
 1	

Client	
 2	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

50	

Controller	
 2	

Client	
 1	
 +	
 Client	
 2	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

Overlap	

Client	
 2	

Client	
 1	

51	

Controller	
 2	
 Controller	
 1	
 +	

Client	
 2	
 injects	
 packets	
 into	
 Client	
 1’s	
 sec-on	
 of	
 the	
 network!	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

Overlap	

Client	
 2	

Client	
 1	

52	

Controller	
 2	
 Controller	
 1	
 +	

Client	
 2	
 intercepts	
 packets	
 from	
 Client	
 1’s	
 sec-on	
 of	
 the	
 network!	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

Overlap	

Client	
 2	

Client	
 1	

53	

Controller	
 2	
 Controller	
 1	
 +	

Client	
 1	
 Client	
 2	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

54	

Controller	
 2	
 Controller	
 1	
 |	

55	

Controller	
 1	
 Controller	
 2	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

Hypervisor	

PORT == 80

PORT != 80

Isola-on	
 as	
 Modularity	

56	

B	
 A2	
 A1	
 A3	
 A4	

Mul--­‐part	

Controller	
 Program	

Isola-on	
 as	
 Modularity	

57	

B	
 A2	
 A1	
 A3	
 A4	

ARP	

Isola-on	
 as	
 Modularity	

58	

B	
 A2	
 A1	
 A3	
 A4	

ARP	

LLDP	

Isola-on	
 as	
 Modularity	

59	

B	
 A2	
 A1	
 A3	
 A4	

ARP	

LLDP	

NAT	

Isola-on	
 as	
 Modularity	

60	

B	
 A2	
 A1	
 A3	
 A4	

ARP	

LLDP	

NAT	

IP	
 RouZng	

Read-­‐only	
 Slices	

61	

•  Network	
 monitoring	

•  Usage-­‐based	
 billing	

B	
 A	

Precise	
 Seman-cs	

62	

Contribu-ons	

63	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

64	

B	
 A2	
 A1	
 A3	
 A4	

Slices	

65	

A2	
 A1	

R1	
 R2	
 R3	

Slices	

66	

A2	
 A1	

R1	
 R2	
 R3	

A2	
 A1	

R1	
 R2	

Slices	

67	

A2	
 A1	

R1	
 R2	
 R3	

A2	
 A1	

R1	
 R2	

Slices	

68	

A2	
 A1	

R1	
 R2	
 R3	

A2	
 A1	

R1	
 R2	

Programming	
 with	
 Slices	

69	

Ethernet	
 type:	

0x0806	

Programming	
 with	
 Slices	

70	

Ethernet	
 type:	

0x0806	

Ethernet	
 type:	

0x0800	

Programming	
 with	
 Slices	

71	

Ethernet	
 type:	

0x0806	

Ethernet	
 type:	

0x0800	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

72	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

73	

S1	
 S4	
 S2	
 S3	

S1	
 S4	
 S2	
 S3	

S1	
 S4	
 S2	
 S3	

VLAN-­‐based	
 Isola-on	

74	

S1	
 S4	
 S2	
 S3	

S1	
 S4	
 S2	
 S3	

S1	
 S4	
 S2	
 S3	

VLAN-­‐based	
 Isola-on	

VLAN=2	

VLAN=1	

75	

S1	
 S4	
 S2	
 S3	

S2	
 S3	

S2	
 S3	

VLAN=2	

VLAN=1	

VLAN-­‐based	
 Isola-on	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

76	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

N
et
Co

re
	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

77	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

N
et
Co

re
	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

78	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

N O X , 	
 N e W l e , 	
 F l o o d l i g h t , 	

e t c . 	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

•  A	
 verifier	
 that	

guarantees:	

79	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

•  A	
 verifier	
 that	

guarantees:	

–  isola-on	

80	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

•  A	
 verifier	
 that	

guarantees:	

–  isola-on,	
 and	

–  seman-c	

equivalence.	

81	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

≅	

Verifying	
 the	
 Results	

82	

N
et
Co

re
	

B	
 A3	
 A4	
 A2	
 A1	

Encoded	
 using	

SMT	
 (Z3)	

Encoded	
 using	

model	
 checking	

(NuSMV)	

Contribu-ons	

•  A	
 new	
 language	
 for	

slices.	

•  A	
 compiler	
 that	

enforces	
 isola-on.	

•  A	
 verifier	
 that	

guarantees:	

–  isola-on,	
 and	

–  seman-c	

equivalence.	

83	

B	
 A2	
 A1	
 A3	
 A4	

Slice	
 Compiler	

B	
 A3	
 A4	
 A2	
 A1	

≅	

8 4 	

Thank	

you!	
 Read	
 the	
 paper:	

frene-c-­‐lang.org/papers	

Get	
 the	
 code:	

github.com/frene-c-­‐lang/netcore	

85	

86	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

Integrity	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

1 Slice	
 2	
 cannot	
 inject	
 packets	
 into	
 Slice	
 1.	

87	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

Integrity	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

1 Slice	
 2	
 cannot	
 inject	
 packets	
 into	
 Slice	
 1.	

88	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

Integrity	

R1	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

A2	
 A1	

R2	

1 Slice	
 2	
 cannot	
 inject	
 packets	
 into	
 Slice	
 1.	

89	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

Integrity	

R1	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

A2	
 A1	

R2	

1 Slice	
 2	
 cannot	
 inject	
 packets	
 into	
 Slice	
 1.	

90	

Confiden-ality	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

Slice	
 2	
 cannot	
 siphon	
 packets	
 from	
 Slice	
 1.	

91	

Confiden-ality	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

Slice	
 2	
 cannot	
 siphon	
 packets	
 from	
 Slice	
 1.	

92	

Confiden-ality	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

Slice	
 2	
 cannot	
 siphon	
 packets	
 from	
 Slice	
 1.	

93	

Confiden-ality	

A2	
 A1	

R1	
 R2	
 R3	

H11	
 H12	
 H21	
 H22	
 H31	
 H32	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

Slice	
 2	
 cannot	
 siphon	
 packets	
 from	
 Slice	
 1.	

Establishing	
 Isola-on	

•  Confiden-ality	
 and	
 integrity	
 are	
 global,	
 end-­‐
to-­‐end	
 proper-es.	

•  But	
 we	
 can	
 establish	
 isola-on	
 by	
 enforcing	

simple,	
 local	
 proper-es.	

94	

Implementa-on	

•  VLAN-­‐based	
 implementa-on.	

95	

Verifica-on	

•  SAT	
 encoding	
 (with	
 Z3)	

•  Separate:	
 given	
 two	
 compiled	
 slices,	

guarantee	
 that	
 they	
 are	
 separate.	

•  SemanZcs-­‐preserving:	
 given	
 a	
 source	
 slice	
 +	

program	
 and	
 a	
 compiled	
 program,	
 verify	
 that	

they	
 are	
 seman-cally	
 equivalent.	

96	

Read	
 the	
 paper:	

hLp://www.cs.princeton.edu/~cschlesi	

	

Download	
 the	
 code:	

hLps://github.com/frene-c-­‐lang/netcore	

97	

98	

Isola-on	
 as	
 Modularity	

•  Queries/network	
 monitoring.	

•  ARP	

99	

PORT	
 !=	
 80	

A2	
 A1	

R2	
 R3	

H22	
 H31	
 H32	

A2	
 A1	

R1	
 R2	

H11	
 H12	
 H21	

PORT	
 ==	
 80	

100	

Controller	
 1	
 Controller	
 2	

One	
 approach:	
 like	
 SFI	

•  Draw	
 a	
 box	
 around	
 each	
 network	
 program	

and	
 prevent	
 them	
 from	
 broaching	
 their	

respec-ve	
 boxes	
 (slices).	

– Absolute.	

– Says	
 nothing	
 about	
 what	
 happens	
 within	
 a	
 slice.	

•  FlowVisor	
 takes	
 this	
 approach.	

101	

Problem:	
 Very	
 Coarse-­‐grained	

•  1:	
 We	
 want	
 isola-on	
 and	
 seman-cs	
 preserving	

by	
 construc-on.	

•  2:	
 We	
 want	
 read-­‐only	
 slices.	

– Consider	
 an	
 admin/billing	
 slice	
 that	
 monitors	
 use.	
 	

Isola-on	
 is	
 too	
 strong,	
 but	
 without	
 isola-on,	
 what	

do	
 we	
 have?	

•  3:	
 Isola-on	
 as	
 modularity.	

102	

Limita-ons	

•  Isola-on	
 as	

modularity.	

•  Inter-­‐slice	

interac-on.	

•  Intra-­‐slice	
 seman-cs.	

103	

?

B	
 A	

ARP	
 A2	
 A3	
 A4	

Splendid	
 	

Isolation
HotSDN	
 Cole	
 Schlesinger	

Au g . 	
 2 0 1 2 	

Jo in t 	
 work 	
 w i th : 	

D a v i d 	
 Wa l k e r 	
 S t e phen 	
 Gu t z 	

A l e c 	
 S t o r y 	

N a t e 	
 F o s t e r 	

36 www.cornelllogo.cornell.edu Revised March 2007

One-color printing

When only one-color printing is available, the insignia, logotype,
and name of college, school, or unit should be printed positive—in
black or Cornell Red.

The insignia, logotype, and name of college, school, or unit also can
be reversed out of any color to white, as shown.

36 www.cornelllogo.cornell.edu Revised March 2007

One-color printing

When only one-color printing is available, the insignia, logotype,
and name of college, school, or unit should be printed positive—in
black or Cornell Red.

The insignia, logotype, and name of college, school, or unit also can
be reversed out of any color to white, as shown.

