
40! O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

Modular SDN Programming with Pyretic
J O S H U A R E I C H , C H R I S T O P H E R M O N S A N T O , N A T E F O S T E R ,
J E N N I F E R R E X F O R D , A N D D A V I D W A L K E R

Joshua Reich is an NSF/CRA
Computing Innovation Fellow
at Princeton University’s
Department of Computer
Science. He designs and builds

systems to utilize networks more effectively—
currently focusing on SDNs. His work on
Pyretic received the NSDI Community Award
(shared with this article’s co-authors). 
jreich@cs.princeton.edu

Christopher Monsanto is a
Ph.D. candidate at Princeton
University, advised by David
Walker. His research interests
include programming languages

and distributed computing. chris@monsan.to

Nate Foster is an Assistant
Professor of Computer
Science at Cornell University.
His research focuses on
abstractions and tools for

building reliable systems.
jnfoster@cs.cornell.edu

Jennifer Rexford is the
Gordon Y.S. Wu Professor of
Engineering in the Computer
Science Department at
Princeton University. She

previously worked at AT&T Research,
where she designed network-management
techniques that were deployed in AT&T’s
backbone network. jrex@cs.princeton.edu

David Walker is a Professor of
Computer Science at Princeton
University. His research focuses
on the theory, design, and
implementation of programming

languages. dpw@cs.princeton.edu

Software-Defined Networking (SDN) enables innovation in network
management by giving a programmable controller direct control over
the underlying switches through an open, standard API, like Open-

Flow. However, existing SDN controllers offer programmers a low-level
programming interface akin to assembly language. In this article, we pres-
ent Pyretic, a programming platform that raises the level of abstraction and
enables the creation of modular software, allowing programmers to create
sophisticated SDN applications.
Managing today’s computer networks is a complex and error-prone task. These networks
consist of a wide variety of devices, from routers and switches to firewalls, network-address
translators, load balancers, and intrusion-detection systems. Network administrators must
express policies through tedious box-by-box configuration, while grappling with a multitude
of protocols and baroque, vendor-specific interfaces.

In contrast, Software-Defined Networking (SDN) is redefining the way we manage networks.
In SDN, a controller application uses a standard, open interface, such as OpenFlow [1], to
specify how network elements or switches should handle incoming packets. Programmers
develop their own new controller applications on top of a controller platform, which pro-
vides a programming API built on top of OpenFlow. Separating the controller platform and
applications from the network elements allows anyone—not just the equipment vendors—to
program new network control software.

In just a few years, SDN has enabled a wealth of innovation, including prominent commercial
successes such as Nicira’s network virtualization platform and Google’s wide-area traffic-
engineering system. Most of the major switch vendors support the OpenFlow API, and many
large information-technology companies are involved in SDN consortia, such as the Open
Networking Foundation and the Open Daylight initiative.

SDN is creating exciting new opportunities for network-savvy software developers and soft-
ware-savvy network practitioners alike. But how should programmers write these controller
applications? The first generation of SDN controller platforms offer programmers a low-level
API closely resembling the interface to the switches. This forces programmers to program
in “assembly language,” by manipulating bit patterns in packets and carefully managing the
shared rule-table space.

In the Frenetic Project [2], we are designing simple, reusable, high level abstractions for
programming SDNs; and efficient runtime systems that automatically generate and install
the corresponding low-level rules on switches [3–7]. Our abstractions cover the main facets
of managing a network-specifying packet-forwarding policy, monitoring network conditions,
and dynamically updating policy to respond to network events. In this article, we describe
Pyretic, our Python-based platform that embodies many of these concepts, and enables sys-
tems programmers to create sophisticated SDN applications.

Pyretic is open-source software that offers a BSD-style license compatible with the needs of
both commercial and research developers. Both the source code for, and a pre-packaged VM

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 41

PROGRAMMING
Modular SDN Programming with Pyretic

containing, Pyretic’s core policy language, libraries, and runtime
are available on the Pyretic home page [8], along with documen-
tation, video tutorials, links to our email discussion list, and
more. Feel free to download and run any of the Pyretic examples
covered in the article.

OpenFlow
Pyretic is both a response to the shortcomings of OpenFlow as a
programmer API, and a client of OpenFlow in its role as an API
to network switches. As such, we begin with a brief review of
OpenFlow.

OpenFlow Switches
An OpenFlow switch has a rule table, where each rule includes:

 ! a bit pattern: including wildcards, for matching header fields—
for example, MAC and IP addresses, protocol, TCP/UDP port
numbers, physical input port, etc.;

 ! a priority: to break ties between overlapping patterns;
 ! a list of actions: for example, forward out a port, flood, drop,

send to controller, assign a new value to a header field, etc.;
 ! optional hard and soft timeouts to evict stale rules;
 ! byte and packet counters that collect information about how

much tra!c is flowing through each rule.

Upon receiving a packet, the switch finds the highest-priority
matching rule, applies each action, and updates the counters.
Newer versions of OpenFlow support additional header fields
and multiple stages of tables.

OpenFlow Controllers
The OpenFlow protocol defines how the controller and switches
interact. The controller maintains a connection to each switch
over which OpenFlow messages are sent. The controller uses
these OpenFlow messages to (un)install rules, query the traffic
counters, learn the network topology, and receive packets when
the switch applies the “send to controller” action. Most existing
controller platforms offer programmers an API that is a thin
“wrapper” around these operations. Applications are expressed
as event handlers that respond to events such as packet arrivals,
topology changes, and new traffic statistics.

Controller Applications
OpenFlow has enabled a wealth of controller applications, includ-
ing flexible access control, Web server load balancing, energy-
efficient networking, billing, intrusion detection, seamless
mobility and virtual-machine migration, and network virtu-
alization. As an example, consider “MAC learning”—an appli-
cation designed to detect the arrival of new hosts, discover
their MAC addresses, and route packets to them. To begin, the
application starts by installing a default rule in each edge switch
that matches all packets and sends them to the controller. Upon
receiving a packet, the application learns the location (i.e., the
switch and input port) of the sender. If the receiver’s location is
already known, the application installs rules that direct traffic
in both directions over a shortest path from one to the other; oth-
erwise, the application instructs the switch to flood—broadcast-
ing the packet to all possible receivers. If a host moves to a new
location, the default rule at the new switch sends the next packet
to the controller, allowing the application to learn the host’s new
location and update the paths that carry traffic to and from the
host. Consequently, hosts can continue communicating without
disruption, even when one or both hosts move.

Pyretic Language
Pyretic encourages programmers to focus on how to specify a
network policy at a high level of abstraction, rather than how to
implement it using low-level OpenFlow mechanisms. In particu-
lar, instead of implementing a policy by incrementally installing
physical rule after physical rule on switch after switch, a Pyretic
policy is specified for the entire network at once, via a function
from an input located packet (i.e., a packet and its location) to
an output set of located packets. The output packets can have
modified fields and usually end up at new locations—this is how
packet forwarding occurs. The programmer does not need to
worry about which OpenFlow rules are used to move packets
from place to place.

One of the primary advantages of Pyretic’s policies-as-abstract-
functions approach to SDN programming is that it helps support
modular programming. In traditional OpenFlow programming, the
programmer cannot write application modules independently

Figure 1: Software Defined Network (SDN)

42! O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Modular SDN Programming with Pyretic

without worrying that they might interfere with one another.
Rather than forcing programmers to carefully merge multiple
pieces of application logic by hand, a Pyretic program can com-
bine multiple policies together using one of several policy com-
position operators, including parallel composition and sequential
composition.

On existing SDN controller platforms, monitoring is merely a
side-effect of installing rules that send packets to the controller,
or accumulate byte and packet counters. Programmers must
painstakingly create rules that simultaneously monitor network
conditions and perform the right forwarding actions. Instead,
Pyretic integrates monitoring into the policy function and sup-
ports a high level query API. The programmer can easily combine
monitoring and forwarding using parallel composition. Pyretic
also provides facilities for creating a dynamic policy whose
behavior will change over time, as specified by the programmer.
Composition operators can be applied to these dynamic policies
just as easily as fixed static ones.

Finally, Pyretic offers a rich topology-abstraction facility that
allow programmers to apply policy functions to an abstract view
of the underlying network. This facility is particularly note-
worthy in that it is actually an application built on top of Pyretic
using the other abstractions in the language.

In this section, we illustrate the features of the language using
examples. Along the way, we build toward a single-switch
Pyretic application that dynamically splits incoming traffic
across several server instances. We conclude by using topology
abstraction to distribute this single-switch application across a
network of many switches.

Network Policy as a Function
A controller application determines the policy for the network
at any moment in time. A conventional OpenFlow program
includes explicit logic that creates and sends rule-installation
messages to switches (logic that includes defining the low-level
bit-match patterns, priorities, and actions for these rules) and
that registers callbacks that poll traffic counters and handle
packets sent to the controller.

In contrast, Pyretic hides these low-level details by allowing
programmers to express policies as compact, abstract functions
that take a packet (at a given location) as input, and return a set
of new packets (at potentially different locations). Returning
the empty set corresponds to dropping the packet. Returning
a single packet corresponds to forwarding the packet to a new
location. Returning multiple packets corresponds to multicast.

The simplest possible Pyretic policy is one where every switch
floods each packet out all ports on the network spanning tree. In
conventional OpenFlow programming, the controller application
would, for each switch, install the rule whose pattern is “don’t

care” on all bits, with a single action “flood” (if that action is
even supported by the switch). In contrast, in Pyretic, the pro-
grammer simply writes one line:

flood()

where flood() is interpreted as a function that takes a packet
located at any port on any switch in the network as an input and
outputs zero, one, or more copies of the same packet at the output
ports of the switch it arrived at—one packet for each port on the
network’s spanning tree. Hence, this simple policy will allow
any collection of hosts to broadcast information to one another
over a network. Moreover, the policy no longer depends upon
specific switch features. The switches used need not implement
a “flood” primitive themselves as the runtime system can choose
to implement flooding behavior using other OpenFlow actions—
a good thing because the “flood” action is an optional feature in
OpenFlow 1.0.

Of course, Pyretic programmers will typically write much more
sophisticated policies. Here’s a fragment of a policy that uses
several more Pyretic features to route a packet with destination
IP 10.0.0.1 across switches A and B.

(match(switch=A) & match(dstip=’10.0.0.1’) >> fwd(6)) +

(match(switch=B) & match(dstip=’10.0.0.1’) >> fwd(7))

Here, we use predicate policies (including match and conjunction)
to disambiguate between packets based on their location in the
network as well as their contents; we use modification policies
(such as fwd) to change the header content or location of packets;
and we use composition operators (such as +, parallel compo-
sition and >>, sequential composition) to put together policy
components. Each of these features, as well as others, will be
explained in the upcoming sections; Table 1 lists several of the
most common basic Pyretic policies.

In this slightly more elaborate policy, there are components that
look somewhat like OpenFlow rules—they match different kinds
of packets and perform different actions; however, as the simpler
flood example shows, these policies do not necessarily map to
OpenFlow rules in a one-to-one fashion. Consequently, Pyretic
programmers must discard the rule-based mental program-
ming model and adopt the functional one. We believe doing so
encourages programmers to focus their minds entirely on the
essential problem: determining the fundamental, high-level logic
required to implement the application properly, not the low-level
encoding of that logic in terms of hardware abstractions and a
series of controller-level event handlers. This also leads to much
more concise code, avoids replicating related functionality, and
reduces the risk of accidental inconsistencies between different
parts of the application.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 43

PROGRAMMING
Modular SDN Programming with Pyretic

From Bit Patterns to Boolean Predicates
An OpenFlow rule matches packets based on a bit pattern in the
header fields, where each bit is a 0, 1, or “don’t care”; however,
expressing a policy in terms of bit patterns is tedious. For
example, matching all packets except those with a destina-
tion IP address of 10.0.0.1 requires two rules. The first, higher-
priority rule matches all packets destined to 10.0.0.1, so that all
remaining packets “fall through” to the second, lower-priority
rule that has a wildcard in each bit position. Similarly, match-
ing either 10.0.0.3 or 10.0.0.4 requires two rules, one for each IP
address (as there is no single bit-pattern that matches both).

Instead of bit patterns in packet-header fields, Pyretic allows
programmers to write basic predicates of the form match(f=v),
demanding that a field f match an abstract value v (such as an IP
address). They can then construct more complicated predicates
using standard Boolean operators such as and (&), or (|), and not
(~). Intuitively, all these predicates act as filters: If the incom-
ing packet satisfies the predicate, the packet passes through the
filter untouched, presumably to be processed in some interest-
ing way by some subsequent part of the policy. If the incoming
packet does not satisfy the predicate, it is dropped (i.e., the empty
set of packets is generated as a result). For example, the Pyretic
programmer simply writes

~match(dstip=’10.0.0.1’)

or

match(switch=A) &

 (match(dstip=’10.0.0.3’) | match(dstip=’10.0.0.4’))

and the runtime system ensures that packets are filtered
accordingly.

Virtual Packet Header Fields
A policy function in Pyretic can match on a packet-header field
(using match(f=v)), and can assign a new value to a header field
(using modify(f=v)). As we have seen, the fields available to the
programmer include the standard physical OpenFlow packet

header fields, such as source and destination IP; however, unlike
OpenFlow packets, Pyretic packets provide a single unified
abstraction for both the packet and its associated metadata. To
this end, Pyretic packets also include standard virtual fields
switch and port that together specify a packet’s location in the
network. In fact, the fwd policy we saw previously is actually just
a special case of modify! Reassigning the value of port simply
“moves’’ the packet from the port on which it arrived to the port
on which it will be sent. The burden of managing all the details
needed to ensure that each packet is forwarded out the correct
hardware port is left to the Pyretic runtime.

Finally, Pyretic programmers are free to define their own, new
virtual fields and use them however they choose, treating each
Pyretic packet as if it were a Python dictionary. For example,
a programmer may want to assign a packet to one of several
paths through a network. Tagging the packet with the chosen
path makes it easier to direct the packet over each of the hops
in the path. In Pyretic, the programmer could create a new
path field and assign it a particular path identifier. Here again,
the burden of realizing this falls to the Pyretic runtime, which
might, under the hood, represent the appropriate informa-
tion using a conventional packet tagging mechanism such as
VLANs or MPLS labels.

Parallel and Sequential Composition
A controller application often needs to perform multiple tasks
(e.g., routing, server load balancing, monitoring, and access con-
trol) that affect handling of the same traffic. Rather than writing
one monolithic program, programmers should be able to combine
multiple independently written modules together. In traditional
OpenFlow programming, different modules could easily inter-
fere with each other. One module might overwrite the rules
installed by another, or drop packets another module expects to
see at the controller. Instead, Pyretic offers two simple composi-
tion operators that allow programmers to combine policies in
series or in parallel.

SEQUENTIAL COMPOSITION
Sequential composition (>>) treats the output of one policy as the
input to another. Consider a simple routing policy:

match(dstip=’2.2.2.8’) >> fwd(1)

In this policy, the match predicate filters out all packets that do
not have destination 2.2.2.8. The >> operator places this filter in
sequence with the forwarding policy fwd(1). Hence any packets
that pass through the filter are forwarded out port 1. Likewise,
the programmer may write

match(switch=1) >> match(dstip=’2.2.2.8’) >> fwd(1)

to specify that packets located at switch 1 and destined to IP
address 2.2.2.8 should be forwarded out port 1. This code uses

Syntax Summary
identity returns original packet
drop returns empty set
match(f=v) identity if field f matches v, drop otherwise
modify(f=v) returns packet with field f set to v
fwd(a) modify (port=a)

flood()
returns one packet for each local port on
the network spanning tree

Table 1: Selected policies

44! O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Modular SDN Programming with Pyretic

sequential composition to compose three independent policies.
The first two policies happen to be filters (though they may be
arbitrary policies). Of course, filtering packets first by one condi-
tion and then by a second condition is equivalent to filtering
packets by the conjunction (&) of the two conditions.

PARALLEL COMPOSITION
Parallel composition (+) applies two policy functions on the same
packet and combines the results. For example, a routing policy R
could be expressed as

R = (match(dstip=’2.2.2.8’) >> fwd(1)) +

 (match(dstip=’2.2.2.9’) >> fwd(2))

Those packets destined to 2.2.2.8 will be forwarded out port 1,
while those destined to 2.2.2.9 will be forwarded out port 2.

As another example, consider a server load-balancing policy
that splits request traffic directed to destination 1.2.3.4 over
two backend servers (2.2.2.8 and 2.2.2.9), depending on the first
bit of the source IP address (packets with sources starting with
0 fall under IP prefix 0.0.0.0/1 and are routed to 2.2.2.8). This
results in the policy:

L = match(dstip=’1.2.3.4’) >>

 ((match(srcip=’0.0.0.0/1’) >> modify(dstip=’2.2.2.8’)) +

 (~match(srcip=’0.0.0.0/1’) >> modify(dstip=’2.2.2.9’)))

This policy happens to adhere to a particularly common pat-
tern: a clause matching one predicate is immediately followed
by a clause matching its negation. Of course, in conventional
programming languages, such patterns are just if statements. In
Pyretic, if_ is an abbreviation that makes policies easier to read:

L = match(dstip=’1.2.3.4’) >>

 if_(match(srcip=’0.0.0.0/1’),

 modify(dstip=’2.2.2.8’),

 modify(dstip=’2.2.2.9’))

CODE REUSE
One final example highlights the power of Pyretic’s composition
operators to enable modular programming. In just one line, the
programmer can write

L >> R

producing a new policy that first selects a server replica and then
forwards the traffic to that chosen replica. As simple as it seems,
this kind of composition is impossible to achieve when program-
ming directly against the OpenFlow API.

Traffic Monitoring
In traditional OpenFlow programs, collecting traffic statistics
involves installing rules (so that byte and packet counters are
available), issuing queries to poll these counters, parsing the

responses when they arrive, and combining counter values
across multiple rules.

In Pyretic, network monitors are just another simple type of
policy that may be conjoined to any of the other policies seen so
far. Table 2 shows several different kinds of monitoring policies
available in Pyretic, including policies that monitor raw pack-
ets, packet counts, and byte counts. The forwarding behavior of
these policies is the same as a policy that drops all packets.

For example, a programmer may create a new query for the first
packet arriving from each unique source IP

Q = packets(limit=1,group_by=[‘srcip’])

and restrict it to Web-traffic requests (i.e., packets destined to
TCP port 80):

match(dstport=80) >> Q

To print each packet that arrives at Q, the programmer registers
a callback routine to handle Q’s callback,

def printer(pkt):

 print pkt

Q.register_callback(printer)

The runtime system handles all of the low-level details of sup-
porting queries—installing rules, polling the counters, receiving
the responses, combining the results as needed, and composing
query implementation with the implementation of other policies.
For example, suppose the programmer composes the example
monitoring query with a routing policy that forwards packets based
on the destination IP address. The runtime system ensures
that the first TCP port 80 packet from each source IP address
reaches the application’s printer routine, while guaranteeing
that this packet (and all subsequent packets from this source) is
forwarded to the output port indicated by the routing policy.

Syntax Summary
packets(

 limit=n,

 group_by=[f1,f2,...])

callback on every packet received
for up to n packets identical
on fields f1,f2,...

count_packets(

 interval=t,

 group_by= [f1,f2,...])

count every packet received
callback every t seconds
providing count for each group

count_bytes(

 interval=t,

 group_by=[f1,f2,...])

count every byte received
callback every t seconds
providing count for each group

Table 2: Query policies

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 45

PROGRAMMING
Modular SDN Programming with Pyretic

Writing Dynamic Policies
Query policies are often used to drive changes to other dynamic
policies. These dynamic policies have behavior (defined by self.

policy) that changes over time, according to the programmer’s
specification.

For example, the routine round_robin takes the first packet
from a new client (source IP address) and updates the policy’s
behavior (by assigning self.policy to a new value), so all future
packets from this source are assigned to the next server in the
sequence (by rewriting the destination IP address); packets from
all other clients are treated as before. After updating the policy,
round_robin also moves the “currently up” server to the next
server in the list.

def round_robin(self,pkt):

 self.policy = if_(match(srcip=pkt[‘srcip’]),

 modify(dstip=self.server),

 self.policy)

 self.client += 1

 self.server = self.servers[self.client % m]

The programmer creates a new “round-robin load balancer’’
dynamic policy class rrlb by subclassing DynamicPolicy and
providing an initialization method that registers round_robin
as a callback routine:

class rrlb(DynamicPolicy):

 def __init__(self,s,servers):

 self.switch = s

 self.servers = servers

 ...

 Q.register_callback(self.round_robin)

 self.policy = match(dstport=80) >> Q

 def round_robin(self,pkt):

 ...

Note that here the query Q is defined as in the previous subsec-
tion; the only difference is that the programmer registers round_

robin as the callback, instead of printer. The programmer then
creates a new instance of rrlb (say, one running on switch 3 and
sending requests to server replicas at 2.2.2.8 and 2.2.2.9) in the
standard way

servers = [‘2.2.2.8’,’2.2.2.9’]

rrlb_on_switch3 = rrlb(3,servers)

producing a policy that can be used in exactly the same ways as
any other. For example, to compose server load balancing with
routing, we might write the following:

rrlb_on_switch3 >> route

Topology Abstraction
In traditional OpenFlow programming, a controller application
written for one switch cannot easily be ported to run over a dis-
tributed collection of switches, or be made to share switch hard-
ware with other packet-processing applications. In the case of
our load balancer example, we may well want to use it to balance
load coming in from many different hosts connected to many
different switches in a complex network. And yet, we would
prefer to avoid conflating the relatively simple functionality of
the load balancer with the logic needed to route the traffic across
the network. A good solution to this problem is to use topology
abstraction to partition the application into two pieces: one that
does the load balancing as before, as if the balancer was imple-
mented on one big switch that could connect all hosts together,
and one that decides on the lower level routes that implement it.
This also serves a secondary purpose: the load balancer is reus-
able and can operate over any network of switches.

To develop this kind of modular program, Pyretic offers a library
for topology abstraction that can represent multiple underlying
switches as a single derived virtual switch, or, alternatively, one
underlying switch as multiple derived virtual switches.

For example, to produce a policy that applies the client policy
rrlb_on_switch3 to a derived (i.e., virtual) switch 3 that
abstracts switches 1, 2, and 3 as a single merged switch, the pro-
grammer simply uses Pyretic’s virtualize function, inputting the
desired policy function and the topology transformation:

virtualize(rrlb_on_switch3,

 merge(name=3,

 from_switches=[1,2,3]))

Here, the merge topology transformation takes the name of a
single virtual switch and a list of underlying switches that used
to create it. Inside, the merge transformation applies shortest-
path routing to direct packets from one edge link to another over
the underlying switches. merge encodes this transformation in
three auxiliary policies—one that handles incoming traffic, one
that handles traffic passing through the derived switch, and one
that handles traffic leaving the switch.

The virtualize policy then implements a transformation of the
written policies (the client policy and three auxiliary poli-
cies) using virtual header fields and sequential composition to
produce a single new policy written for the underlying network
[6]. The resulting policy is exactly the same as any other Pyretic
policy, and can be both composed with other policies, or used as
the basis for yet another layer of virtualization.

46! O C TO B ER 20 13 VO L . 3 8 N O. 5 www.usenix.org

PROGRAMMING
Modular SDN Programming with Pyretic

Pyretic Runtime
Of course, high level programming abstractions are only useful
if they can be implemented efficiently on the switches. This
section provides a brief overview of the Pyretic runtime system,
focusing on the backend interface to the OpenFlow switches and
policy evaluation.

Backend Interface
Pyretic’s runtime is designed to be used atop a variety of differ-
ent OpenFlow controller backends. The Pyretic runtime con-
nects via a standard socket to a simple OpenFlow client that could
be written on top of any OpenFlow controller platform. The run-
time manipulates the network by sending messages to the client
(e.g., to inject packets, modify rules, and issue counter reads).
Likewise messages from the client keep Pyretic updated regard-
ing network events (e.g., packet ins, port status events, counter
values read). This design enables Pyretic to take advantage of
the best controller technology available, and allows the system
to be entirely self-contained. The current Pyretic runtime comes
packaged with an OpenFlow client written on the popular POX
controller platform.

Policy Evaluation
The Pyretic runtime implements an interpreter that evaluates
an input packet against the current policy. In its simplest mode
of operation, all packets are initially evaluated by this inter-
preter. Concurrently, the runtime keeps track of currently active
queries, updates to dynamic policies, and modifications to the
network topology. On its general setting, when it is safe to do so,
the runtime proactively installs rules on switches before they
are needed, to avoid unnecessary switch-controller latency.
For more information on the current runtime implementation,
please see the Pyretic home page [8].

Conclusions
Pyretic lowers the barrier to creating sophisticated SDN applica-
tions and comes with several example of common enterprise
and datacenter network applications (e.g., hub, MAC-learning
switch, traffic monitor, firewall, ARP server, network virtual-
ization, and gateway router). Since the initial release of Pyretic
in April 2013, the community of developers has grown quickly.

Some have built new applications from scratch, while others
have ported systems originally written on other platforms.

In one case, the Resonance [9] system for event-driven control was
rewritten in Pyretic, taking approximately one programmer-day
and resulting in a six-fold reduction in code size over an earlier
version written on the NOX controller platform. These savings
were realized thanks to Pyretic’s declarative design and power-
ful yet concise policy language. Short expressions involving
basic policies, such as match and fwd, combined with composi-
tion operators to replace complex code specifying various packet
handlers and the logic they contained: packet matching, modifi-
cation and injection, as well as OpenFlow rule construction and
installation. In fact, Pyretic’s focus on modular design enabled
the Resonance team to encode more sophisticated policies than
had been available in the NOX version.

Pyretic has also been featured in Georgia Tech’s SDN Coursera
course [10] where it was used as the platform for one of the
course’s three programming assignments.

In addition to enhancing our runtime system with enhanced
compilation support, in our ongoing work we are also making
extensions to the language and runtime system to support new
features, such as quality-of-service mechanisms and parsing
of packet contents. Additionally, we are creating more sophis-
ticated applications, including RADIUS and DHCP services
(to authenticate end hosts and assign them IP addresses) and
wide-area traffic-management solutions for Internet Service
Providers at SDN-enabled Internet Exchange Points.

We welcome newcomers to our community, whether they are
interested in using Pyretic or in contributing to its development.
Please visit our Web site, join our discuss list, or email us.

Acknowledgments
Our work is supported in part by ONR grant N00014-09-1-
0770 and NSF grants 1111698, 1111520, 1016937, 1253165,
and 0964409, a Sloan Research Fellowship, and a NSF/CRA
Computing Innovation Fellowship. Any opinions, findings, and
recommendations are those of the authors and do not neces-
sarily reflect the views of the NSF, CRA, ONR, or the Sloan
Foundation.

www.usenix.org O C TO B ER 20 13 VO L . 3 8 N O. 5 47

PROGRAMMING
Modular SDN Programming with Pyretic

References
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
Enabling Innovation in Campus Networks,” SIGCOMM CCR,
vol. 38, no. 2 (2008), pp. 69-74.

[2] The Frenetic Project: http://www.frenetic-lang.org.

[3] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker, “Frenetic: A Network
 Programming Language,” ACM ICFP, Sept. 2011.

[4] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A
 Compiler and Run-Time System for Network Programs,”
POPL, Jan. 2012.

[5] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D.
Walker, “Abstractions for Network Update,” ACM SIGCOMM,
Aug. 2012.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker,
“Composing Software-Defined Networks,” USENIX NSDI,
2013.

[7] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. P.
Katta, C. Monsanto, J. Reich, M. Reitblatt, J. Rexford, C.
Schlesinger, A. Story, and D. Walker, “Languages for Software-
Defined Networks,” IEEE Communications, vol. 51 (Feb 2013),
pp. 128-134.

[8] Pyretic home page: http://www.frenetic-lang.org/pyretic.

[9] Resonance Project: http://resonance.noise.gatech.edu.

[10] Coursera course on SDN: https://www.coursera.org/
course/sdn.

Do you know about the USENIX Open Access Policy?

USENIX is the first computing association to offer free and open access
to all of our conferences proceedings and videos. We stand by our mis-
sion to foster excellence and innovation while supporting research with
a practical bias. Your membership fees play a major role in making this
endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

