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Software-Defined Networking (SDN) enables innovation in network 
management by giving a programmable controller direct control over 
the underlying switches through an open, standard API, like Open-

Flow.  However, existing SDN controllers offer programmers a low-level 
programming interface akin to assembly language.  In this article, we pres-
ent Pyretic, a programming platform that raises the level of abstraction and 
enables the creation of modular software, allowing programmers to create 
sophisticated SDN applications. 
Managing today’s computer networks is a complex and error-prone task. These networks 
consist of a wide variety of devices, from routers and switches to firewalls, network-address 
translators, load balancers, and intrusion-detection systems. Network administrators must 
express policies through tedious box-by-box configuration, while grappling with a multitude 
of protocols and baroque, vendor-specific interfaces. 

In contrast, Software-Defined Networking (SDN) is redefining the way we manage  networks. 
In SDN, a controller application uses a standard, open interface, such as OpenFlow [1], to 
specify how network elements or switches should handle incoming packets. Programmers 
develop their own new controller applications on top of a controller platform, which pro-
vides a programming API built on top of OpenFlow. Separating the controller platform and 
applications from the network elements allows anyone—not just the equipment vendors—to 
program new network control software. 

In just a few years, SDN has enabled a wealth of innovation, including prominent commercial 
successes such as Nicira’s network virtualization platform and Google’s wide-area traffic-
engineering system. Most of the major switch vendors support the OpenFlow API, and many 
large information-technology companies are involved in SDN consortia, such as the Open 
Networking Foundation and the Open Daylight initiative. 

SDN is creating exciting new opportunities for network-savvy software developers and soft-
ware-savvy network practitioners alike. But how should programmers write these controller 
applications? The first generation of SDN controller platforms offer programmers a low-level 
API closely resembling the interface to the switches. This forces programmers to program 
in “assembly language,” by manipulating bit patterns in packets and carefully managing the 
shared rule-table space. 

In the Frenetic Project [2], we are designing simple, reusable, high level abstractions for 
programming SDNs; and efficient runtime systems that automatically generate and install 
the corresponding low-level rules on switches [3–7]. Our abstractions cover the main facets 
of managing a network-specifying packet-forwarding policy, monitoring network conditions, 
and dynamically updating policy to respond to network events. In this article, we describe 
Pyretic, our Python-based platform that embodies many of these concepts, and enables sys-
tems programmers to create sophisticated SDN applications. 

Pyretic is open-source software that offers a BSD-style license compatible with the needs of 
both commercial and research developers. Both the source code for, and a pre-packaged VM 
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containing, Pyretic’s core policy language, libraries, and runtime 
are available on the Pyretic home page [8], along with documen-
tation, video tutorials, links to our email discussion list, and 
more. Feel free to download and run any of the Pyretic examples 
covered in the article. 

OpenFlow
Pyretic is both a response to the shortcomings of OpenFlow as a 
programmer API, and a client of OpenFlow in its role as an API 
to network switches. As such, we begin with a brief review of 
OpenFlow. 

OpenFlow Switches
An OpenFlow switch has a rule table, where each rule includes: 

 ! a bit pattern: including wildcards, for matching header fields—
for example, MAC and IP addresses, protocol, TCP/UDP port 
numbers, physical input port, etc.; 

 ! a priority: to break ties between overlapping patterns; 
 ! a list of actions: for example, forward out a port, flood, drop, 

send to controller, assign a new value to a header field, etc.; 
 ! optional hard and soft timeouts to evict stale rules;
 ! byte and packet counters that collect information about how 

much tra!c is flowing through each rule. 

Upon receiving a packet, the switch finds the highest-priority 
matching rule, applies each action, and updates the counters. 
Newer versions of OpenFlow support additional header fields 
and multiple stages of tables. 

OpenFlow Controllers
The OpenFlow protocol defines how the controller and switches 
interact. The controller maintains a connection to each switch 
over which OpenFlow messages are sent. The controller uses 
these OpenFlow messages to (un)install rules, query the traffic 
counters, learn the network topology, and receive packets when 
the switch applies the “send to controller” action. Most existing 
controller platforms offer programmers an API that is a thin 
“wrapper” around these operations. Applications are expressed 
as event handlers that respond to events such as packet arrivals, 
topology changes, and new traffic statistics. 

Controller Applications
OpenFlow has enabled a wealth of controller applications, includ-
ing flexible access control, Web server load balancing, energy-
efficient networking, billing, intrusion detection, seamless 
mobility and virtual-machine migration, and network virtu-
alization. As an example, consider “MAC learning”—an appli-
cation designed to detect the arrival of new hosts, discover 
their MAC addresses, and route packets to them. To begin, the 
application starts by installing a default rule in each edge switch 
that matches all packets and sends them to the controller. Upon 
receiving a packet, the application learns the location (i.e., the 
switch and input port) of the sender. If the receiver’s location is 
already known, the application installs rules that direct traffic 
in both directions over a shortest path from one to the other; oth-
erwise, the application instructs the switch to flood—broadcast-
ing the packet to all possible receivers. If a host moves to a new 
location, the default rule at the new switch sends the next packet 
to the controller, allowing the application to learn the host’s new 
location and update the paths that carry traffic to and from the 
host. Consequently, hosts can continue communicating without 
disruption, even when one or both hosts move. 

Pyretic Language
Pyretic encourages programmers to focus on how to specify a 
network policy at a high level of abstraction, rather than how to 
implement it using low-level OpenFlow mechanisms. In particu-
lar, instead of implementing a policy by incrementally installing 
physical rule after physical rule on switch after switch, a Pyretic 
policy is specified for the entire network at once, via a function 
from an input located packet (i.e., a packet and its location) to 
an output set of located packets. The output packets can have 
modified fields and usually end up at new locations—this is how 
packet forwarding occurs. The programmer does not need to 
worry about which OpenFlow rules are used to move packets 
from place to place. 

One of the primary advantages of Pyretic’s policies-as-abstract-
functions approach to SDN programming is that it helps support 
modular programming. In traditional OpenFlow programming, the 
programmer cannot write application modules  independently 

Figure 1: Software Defined Network (SDN)
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without worrying that they might interfere with one another. 
Rather than forcing programmers to carefully merge multiple 
pieces of application logic by hand, a Pyretic program can com-
bine multiple policies together using one of several policy com-
position operators, including parallel composition and sequential 
composition. 

On existing SDN controller platforms, monitoring is merely a 
side-effect of installing rules that send packets to the controller, 
or accumulate byte and packet counters. Programmers must 
painstakingly create rules that simultaneously monitor network 
conditions and perform the right forwarding actions. Instead, 
Pyretic integrates monitoring into the policy function and sup-
ports a high level query API. The programmer can easily combine 
monitoring and forwarding using parallel composition. Pyretic 
also provides facilities for creating a dynamic policy whose 
behavior will change over time, as specified by the programmer. 
Composition operators can be applied to these dynamic policies 
just as easily as fixed static ones. 

Finally, Pyretic offers a rich topology-abstraction facility that 
allow programmers to apply policy functions to an abstract view 
of the underlying network. This facility is particularly note-
worthy in that it is actually an application built on top of Pyretic 
using the other abstractions in the language. 

In this section, we illustrate the features of the language using 
examples. Along the way, we build toward a single-switch 
Pyretic application that dynamically splits incoming traffic 
across several server instances. We conclude by using topology 
abstraction to distribute this single-switch application across a 
network of many switches. 

Network Policy as a Function
A controller application determines the policy for the network 
at any moment in time. A conventional OpenFlow program 
includes explicit logic that creates and sends rule-installation 
messages to switches (logic that includes defining the low-level 
bit-match patterns, priorities, and actions for these rules) and 
that registers callbacks that poll traffic counters and handle 
packets sent to the controller. 

In contrast, Pyretic hides these low-level details by allowing 
programmers to express policies as compact, abstract functions 
that take a packet (at a given location) as input, and return a set 
of new packets (at potentially different locations). Returning 
the empty set corresponds to dropping the packet. Returning 
a single packet corresponds to forwarding the packet to a new 
location. Returning multiple packets corresponds to multicast. 

The simplest possible Pyretic policy is one where every switch 
floods each packet out all ports on the network spanning tree. In 
conventional OpenFlow programming, the controller application 
would, for each switch, install the rule whose pattern is “don’t 

care” on all bits, with a single action “flood” (if that action is 
even supported by the switch). In contrast, in Pyretic, the pro-
grammer simply writes one line: 

flood()

where flood() is interpreted as a function that takes a packet 
located at any port on any switch in the network as an input and 
outputs zero, one, or more copies of the same packet at the output 
ports of the switch it arrived at—one packet for each port on the 
network’s spanning tree. Hence, this simple policy will allow 
any collection of hosts to broadcast information to one another 
over a network. Moreover, the policy no longer depends upon 
specific switch features. The switches used need not implement 
a “flood” primitive themselves as the runtime system can choose 
to implement flooding behavior using other OpenFlow actions—
a good thing because the “flood” action is an optional feature in 
OpenFlow 1.0. 

Of course, Pyretic programmers will typically write much more 
sophisticated policies. Here’s a fragment of a policy that uses 
several more Pyretic features to route a packet with destination 
IP 10.0.0.1 across switches A and B. 

(match(switch=A) & match(dstip=’10.0.0.1’) >> fwd(6)) +

(match(switch=B) & match(dstip=’10.0.0.1’) >> fwd(7))

Here, we use predicate policies (including match and  conjunction) 
to disambiguate between packets based on their location in the 
network as well as their contents; we use modification policies 
(such as fwd) to change the header content or location of packets; 
and we use composition operators (such as +, parallel compo-
sition and >>, sequential composition) to put together policy 
components. Each of these features, as well as others, will be 
explained in the upcoming sections; Table 1 lists several of the 
most common basic Pyretic policies. 

In this slightly more elaborate policy, there are components that 
look somewhat like OpenFlow rules—they match different kinds 
of packets and perform different actions; however, as the simpler 
flood example shows, these policies do not necessarily map to 
OpenFlow rules in a one-to-one fashion. Consequently, Pyretic 
programmers must discard the rule-based mental program-
ming model and adopt the functional one. We believe doing so 
encourages programmers to focus their minds entirely on the 
essential problem: determining the fundamental, high-level logic 
required to implement the application properly, not the low-level 
encoding of that logic in terms of hardware abstractions and a 
series of controller-level event handlers. This also leads to much 
more concise code, avoids replicating related functionality, and 
reduces the risk of accidental inconsistencies between different 
parts of the application. 
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From Bit Patterns to Boolean Predicates
An OpenFlow rule matches packets based on a bit pattern in the 
header fields, where each bit is a 0, 1, or “don’t care”;  however, 
expressing a policy in terms of bit patterns is tedious. For 
example, matching all packets except those with a destina-
tion IP address of 10.0.0.1 requires two rules. The first, higher-
priority rule matches all packets destined to 10.0.0.1, so that all 
remaining packets “fall through” to the second, lower-priority 
rule that has a wildcard in each bit position. Similarly, match-
ing either 10.0.0.3 or 10.0.0.4 requires two rules, one for each IP 
address (as there is no single bit-pattern that matches both). 

Instead of bit patterns in packet-header fields, Pyretic allows 
programmers to write basic predicates of the form match(f=v), 
demanding that a field f match an abstract value v (such as an IP 
address). They can then construct more complicated predicates 
using standard Boolean operators such as and (&), or (|), and not 
(~). Intuitively, all these predicates act as filters: If the incom-
ing packet satisfies the predicate, the packet passes through the 
filter untouched, presumably to be processed in some interest-
ing way by some subsequent part of the policy. If the incoming 
packet does not satisfy the predicate, it is dropped (i.e., the empty 
set of packets is generated as a result). For example, the Pyretic 
programmer simply writes 

~match(dstip=’10.0.0.1’)

or 

match(switch=A) & 

 (match(dstip=’10.0.0.3’) | match(dstip=’10.0.0.4’))

and the runtime system ensures that packets are filtered 
accordingly. 

Virtual Packet Header Fields
A policy function in Pyretic can match on a packet-header field 
(using match(f=v)), and can assign a new value to a header field 
(using modify(f=v)). As we have seen, the fields available to the 
programmer include the standard physical OpenFlow packet 

header fields, such as source and destination IP; however, unlike 
OpenFlow packets, Pyretic packets provide a single unified 
abstraction for both the packet and its associated metadata. To 
this end, Pyretic packets also include standard virtual fields 
switch and port that together specify a packet’s location in the 
network. In fact, the fwd policy we saw previously is actually just 
a special case of modify! Reassigning the value of port simply 
“moves’’ the packet from the port on which it arrived to the port 
on which it will be sent. The burden of managing all the details 
needed to ensure that each packet is forwarded out the correct 
hardware port is left to the Pyretic runtime. 

Finally, Pyretic programmers are free to define their own, new 
virtual fields and use them however they choose, treating each 
Pyretic packet as if it were a Python dictionary. For example, 
a programmer may want to assign a packet to one of several 
paths through a network. Tagging the packet with the chosen 
path makes it easier to direct the packet over each of the hops 
in the path. In Pyretic, the programmer could create a new 
path field and assign it a particular path identifier. Here again, 
the burden of realizing this falls to the Pyretic runtime, which 
might, under the hood, represent the appropriate informa-
tion using a conventional packet tagging mechanism such as 
VLANs or MPLS labels. 

Parallel and Sequential Composition
A controller application often needs to perform multiple tasks 
(e.g., routing, server load balancing, monitoring, and access con-
trol) that affect handling of the same traffic. Rather than writing 
one monolithic program, programmers should be able to combine 
multiple independently written modules together. In  traditional 
OpenFlow programming, different modules could easily inter-
fere with each other. One module might overwrite the rules 
installed by another, or drop packets another module expects to 
see at the controller. Instead, Pyretic offers two simple composi-
tion operators that allow programmers to combine policies in 
series or in parallel. 

SEQUENTIAL COMPOSITION
Sequential composition (>>) treats the output of one policy as the 
input to another. Consider a simple routing policy: 

match(dstip=’2.2.2.8’) >> fwd(1)

In this policy, the match predicate filters out all packets that do 
not have destination 2.2.2.8. The >> operator places this filter in 
sequence with the forwarding policy fwd(1). Hence any packets 
that pass through the filter are forwarded out port 1. Likewise, 
the programmer may write 

match(switch=1) >> match(dstip=’2.2.2.8’) >> fwd(1)

to specify that packets located at switch 1 and destined to IP 
address 2.2.2.8 should be forwarded out port 1. This code uses 

Syntax Summary
identity returns original packet
drop returns empty set
match(f=v) identity if field f matches v, drop otherwise
modify(f=v) returns packet with field f set to v
fwd(a) modify (port=a)

flood()
returns one packet for each local port on 
the network spanning tree

Table 1: Selected policies
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sequential composition to compose three independent policies. 
The first two policies happen to be filters (though they may be 
arbitrary policies). Of course, filtering packets first by one condi-
tion and then by a second condition is equivalent to filtering 
packets by the conjunction (&) of the two conditions. 

PARALLEL COMPOSITION
Parallel composition (+) applies two policy functions on the same 
packet and combines the results. For example, a routing policy R 
could be expressed as 

R = (match(dstip=’2.2.2.8’) >> fwd(1)) + 

     (match(dstip=’2.2.2.9’) >> fwd(2))

Those packets destined to 2.2.2.8 will be forwarded out port 1, 
while those destined to 2.2.2.9 will be forwarded out port 2. 

As another example, consider a server load-balancing policy 
that splits request traffic directed to destination 1.2.3.4 over 
two backend servers (2.2.2.8 and 2.2.2.9), depending on the first 
bit of the source IP address (packets with sources starting with 
0 fall under IP prefix 0.0.0.0/1 and are routed to 2.2.2.8). This 
results in the policy: 

L = match(dstip=’1.2.3.4’) >> 

      ((match(srcip=’0.0.0.0/1’) >> modify(dstip=’2.2.2.8’)) + 

       (~match(srcip=’0.0.0.0/1’) >> modify(dstip=’2.2.2.9’)))

This policy happens to adhere to a particularly common pat-
tern: a clause matching one predicate is immediately followed 
by a clause matching its negation. Of course, in conventional 
programming languages, such patterns are just if statements. In 
Pyretic, if_ is an abbreviation that makes policies easier to read: 

L = match(dstip=’1.2.3.4’) >> 

     if_(match(srcip=’0.0.0.0/1’),          

          modify(dstip=’2.2.2.8’),

          modify(dstip=’2.2.2.9’))

CODE REUSE
One final example highlights the power of Pyretic’s composition 
operators to enable modular programming. In just one line, the 
programmer can write 

L >> R 

producing a new policy that first selects a server replica and then 
forwards the traffic to that chosen replica. As simple as it seems, 
this kind of composition is impossible to achieve when program-
ming directly against the OpenFlow API. 

Traffic Monitoring
In traditional OpenFlow programs, collecting traffic statistics 
involves installing rules (so that byte and packet counters are 
available), issuing queries to poll these counters, parsing the 

responses when they arrive, and combining counter values 
across multiple rules. 

In Pyretic, network monitors are just another simple type of 
policy that may be conjoined to any of the other policies seen so 
far. Table 2 shows several different kinds of monitoring policies 
available in Pyretic, including policies that monitor raw pack-
ets, packet counts, and byte counts. The forwarding behavior of 
these policies is the same as a policy that drops all packets. 

For example, a programmer may create a new query for the first 
packet arriving from each unique source IP 

Q = packets(limit=1,group_by=[‘srcip’])

and restrict it to Web-traffic requests (i.e., packets destined to 
TCP port 80): 

match(dstport=80) >> Q

To print each packet that arrives at Q, the programmer registers 
a callback routine to handle Q’s callback, 

def printer(pkt):

  print pkt

Q.register_callback(printer)

The runtime system handles all of the low-level details of sup-
porting queries—installing rules, polling the counters, receiving 
the responses, combining the results as needed, and composing 
query implementation with the implementation of other policies. 
For example, suppose the programmer composes the example 
monitoring query with a routing policy that forwards packets based 
on the destination IP address. The runtime system ensures 
that the first TCP port 80 packet from each source IP address 
reaches the application’s printer routine, while guaranteeing 
that this packet (and all subsequent packets from this source) is 
forwarded to the output port indicated by the routing policy. 

Syntax Summary
packets( 

  limit=n, 

  group_by=[f1,f2,...]) 

callback on every packet received 
for up to n packets identical 
on fields f1,f2,... 

count_packets( 

  interval=t, 

  group_by= [f1,f2,...]) 

count every packet received 
callback every t seconds 
providing count for each group 

count_bytes( 

  interval=t, 

  group_by=[ f1,f2,...]) 

count every byte received 
callback every t seconds 
providing count for each group

Table 2: Query policies
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Writing Dynamic Policies
Query policies are often used to drive changes to other dynamic 
policies. These dynamic policies have behavior (defined by self.

policy) that changes over time, according to the programmer’s 
specification. 

For example, the routine round_robin takes the first packet 
from a new client (source IP address) and updates the policy’s 
behavior (by assigning self.policy to a new value), so all future 
packets from this source are assigned to the next server in the 
sequence (by rewriting the destination IP address); packets from 
all other clients are treated as before. After updating the policy, 
round_robin also moves the “currently up” server to the next 
server in the list. 

def round_robin(self,pkt):

  self.policy = if_(match(srcip=pkt[‘srcip’]),

                       modify(dstip=self.server),

                       self.policy)

  self.client += 1

  self.server = self.servers[self.client % m]

The programmer creates a new “round-robin load balancer’’ 
dynamic policy class rrlb by subclassing DynamicPolicy and 
providing an initialization method that registers round_robin 
as a callback routine: 

class rrlb(DynamicPolicy):

  def __init__(self,s,servers):

    self.switch = s

    self.servers = servers 

    ...

    Q.register_callback(self.round_robin)

    self.policy = match(dstport=80) >> Q

  def round_robin(self,pkt):

     ...

Note that here the query Q is defined as in the previous subsec-
tion; the only difference is that the programmer registers round_

robin as the callback, instead of printer. The programmer then 
creates a new instance of rrlb (say, one running on switch 3 and 
sending requests to server replicas at 2.2.2.8 and 2.2.2.9) in the 
standard way 

servers = [‘2.2.2.8’,’2.2.2.9’]

rrlb_on_switch3 = rrlb(3,servers)

producing a policy that can be used in exactly the same ways as 
any other. For example, to compose server load balancing with 
routing, we might write the following: 

rrlb_on_switch3 >> route

Topology Abstraction
In traditional OpenFlow programming, a controller application 
written for one switch cannot easily be ported to run over a dis-
tributed collection of switches, or be made to share switch hard-
ware with other packet-processing applications. In the case of 
our load balancer example, we may well want to use it to balance 
load coming in from many different hosts connected to many 
different switches in a complex network. And yet, we would 
prefer to avoid conflating the relatively simple functionality of 
the load balancer with the logic needed to route the traffic across 
the network. A good solution to this problem is to use topology 
abstraction to partition the application into two pieces: one that 
does the load balancing as before, as if the balancer was imple-
mented on one big switch that could connect all hosts together, 
and one that decides on the lower level routes that implement it. 
This also serves a secondary purpose: the load balancer is reus-
able and can operate over any network of switches. 

To develop this kind of modular program, Pyretic offers a library 
for topology abstraction that can represent multiple underlying 
switches as a single derived virtual switch, or, alternatively, one 
underlying switch as multiple derived virtual switches. 

For example, to produce a policy that applies the client policy 
rrlb_on_switch3 to a derived (i.e., virtual) switch 3 that 
abstracts switches 1, 2, and 3 as a single merged switch, the pro-
grammer simply uses Pyretic’s virtualize function, inputting the 
desired policy function and the topology transformation: 

virtualize(rrlb_on_switch3,

            merge(name=3,

                    from_switches=[1,2,3]))

Here, the merge topology transformation takes the name of a 
single virtual switch and a list of underlying switches that used 
to create it. Inside, the merge transformation applies shortest-
path routing to direct packets from one edge link to another over 
the underlying switches. merge encodes this transformation in 
three auxiliary policies—one that handles incoming traffic, one 
that handles traffic passing through the derived switch, and one 
that handles traffic leaving the switch. 

The virtualize policy then implements a transformation of the 
written policies (the client policy and three auxiliary poli-
cies) using virtual header fields and sequential composition to 
produce a single new policy written for the underlying network 
[6]. The resulting policy is exactly the same as any other Pyretic 
policy, and can be both composed with other policies, or used as 
the basis for yet another layer of virtualization. 
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Pyretic Runtime
Of course, high level programming abstractions are only useful 
if they can be implemented efficiently on the switches. This 
section provides a brief overview of the Pyretic runtime system, 
focusing on the backend interface to the OpenFlow switches and 
policy evaluation. 

Backend Interface
Pyretic’s runtime is designed to be used atop a variety of differ-
ent OpenFlow controller backends. The Pyretic runtime con-
nects via a standard socket to a simple OpenFlow client that could 
be written on top of any OpenFlow controller platform. The run-
time manipulates the network by sending messages to the client 
(e.g., to inject packets, modify rules, and issue counter reads). 
Likewise messages from the client keep Pyretic updated regard-
ing network events (e.g., packet ins, port status events, counter 
values read). This design enables Pyretic to take advantage of 
the best controller technology available, and allows the system 
to be entirely self-contained. The current Pyretic runtime comes 
packaged with an OpenFlow client written on the popular POX 
controller platform. 

Policy Evaluation
The Pyretic runtime implements an interpreter that evaluates 
an input packet against the current policy. In its simplest mode 
of operation, all packets are initially evaluated by this inter-
preter. Concurrently, the runtime keeps track of currently active 
queries, updates to dynamic policies, and modifications to the 
network topology. On its general setting, when it is safe to do so, 
the runtime proactively installs rules on switches before they 
are needed, to avoid unnecessary switch-controller latency. 
For more information on the current runtime implementation, 
please see the Pyretic home page [8]. 

Conclusions
Pyretic lowers the barrier to creating sophisticated SDN applica-
tions and comes with several example of common enterprise 
and datacenter network applications (e.g., hub, MAC-learning 
switch, traffic monitor, firewall, ARP server, network virtual-
ization, and gateway router). Since the initial release of Pyretic 
in April 2013, the community of developers has grown quickly. 

Some have built new applications from scratch, while others 
have ported systems originally written on other platforms. 

In one case, the Resonance [9] system for event-driven  control was 
rewritten in Pyretic, taking approximately one  programmer-day 
and resulting in a six-fold reduction in code size over an earlier 
version written on the NOX controller platform. These savings 
were realized thanks to Pyretic’s declarative design and power-
ful yet concise policy language. Short expressions involving 
basic policies, such as match and fwd, combined with composi-
tion operators to replace complex code specifying various packet 
handlers and the logic they contained: packet matching, modifi-
cation and injection, as well as OpenFlow rule construction and 
installation. In fact, Pyretic’s focus on modular design enabled 
the Resonance team to encode more sophisticated policies than 
had been available in the NOX version. 

Pyretic has also been featured in Georgia Tech’s SDN  Coursera 
course [10] where it was used as the platform for one of the 
course’s three programming assignments. 

In addition to enhancing our runtime system with enhanced 
compilation support, in our ongoing work we are also making 
extensions to the language and runtime system to support new 
features, such as quality-of-service mechanisms and parsing  
of packet contents. Additionally, we are creating more sophis-
ticated applications, including RADIUS and DHCP services  
(to authenticate end hosts and assign them IP addresses) and 
wide-area traffic-management solutions for Internet Service 
Providers at SDN-enabled Internet Exchange Points. 

We welcome newcomers to our community, whether they are 
interested in using Pyretic or in contributing to its development. 
Please visit our Web site, join our discuss list, or email us. 
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