
Logic Programming for Software-Defined Networks

Naga Praveen Katta
Princeton University

Jennifer Rexford
Princeton University

David Walker
Princeton University

1. Introduction
In the past, most networks were built out of a collection of special-
purpose devices running distributed algorithms that process topol-
ogy information, define routing and access control policies, per-
form traffic monitoring and execute other services. These networks
were usually managed through a set of complex, low-level, and
heterogeneous interfaces that allowed users to configure separately
firewalls, network address translators, load balancers, routers and
switches. Overall, such an approach to network configuration in-
volved managing thousands of lines of brittle, low-level code in dif-
ferent domain-specific languages that expressed how various com-
plex routing mechanisms should work as opposed to what high-
level policy should be implemented. It was a remarkably complex
and error-prone task.

Recently [4, 10], however, we have seen the emergence of a new
kind of network architecture, referred to as software-defined net-
working (SDN) that has the potential to do away with the plethora
of special purpose network devices and the low-level interfaces
we find in conventional networks. In a software-defined network,
a logically centralized controller machine manages a distributed
set of switches. The controller is a general purpose machine capa-
ble of performing arbitrary computations, such as those computa-
tions that are necessary to infer network topology and make routing
decisions. When the controller decides on a routing policy, it im-
plements that policy by instructing the switches to install the nec-
essary packet-forwarding rules. Each such packet-forwarding rule
includes a predicate, an action and a priority. Predicates match cer-
tain packets based on the values in the packet header fields (e.g.,
the packet’s source IP address, destination IP address, source MAC
address, etc.). If two different rules match a packet, the rule with
the higher priority is triggered. When a rule is triggered, its action
takes effect. Typical actions include the action to drop the packet,
to forward the packet out one of the ports on the switch, to flood
the packet out all ports on the switch, to rewrite one or more header
fields before forwarding, or to forward the packet to the controller
for further, more general processing or analysis.

In addition to forwarding packets, each switch records certain
statistics. Specifically, it records the number of packets that match
each rule and the number of bytes processed by each rule. The
controller may request such statistics to help it make forwarding
decisions.

Today’s most common controller programming platforms such
as NOX [6] and Beacon [1] provide a programming interface that
supports a low-level, imperative, event-driven model in which pro-
grams react to network events (like packet arrival, link status up-
date etc.) by explicitly installing and uninstalling individual, low-
level packet processing rules rule-by-rule and switch-by-switch. In
such a situation, programmers must constantly consider whether
(un)installing switch policies will effect other/future events mon-
itored by the controller, and must explicitly coordinate multiple
asynchronous events at the switches, to perform even simple tasks.
One would prefer to be able to specify the current forwarding pol-
icy at a high level of abstraction and have a compiler and run-time

system manage the tedious details of installing individual switch-
level rules, automatically.

One effort in this direction is FML [7], which is a high-level,
domain-specific SDN programming language based on datalog. It
comes equipped with a set of very high-level built-in policy opera-
tors that allow/deny certain flows, waypoint flows through a firewall
or provide quality of service. When the network forwarding policy
falls in to the space of policies that can be described by an FML
program, the code for implementing the policy is extremely com-
pact and elegant. Unfortunately, however, while new policy opera-
tors can be added, the additions come by coding outside the FML
language itself in C++ or some other language. Moreover, the gran-
ularity at which FML operates is a unidirectional network flow (i.e.,
set of related packets). This means that a resulting policy decision
applies equally to all packets within the same flow — it is not pos-
sible to move or redirect a flow as it is processed. Consequently,
while FML provides network operators with a very useful set of
SDN abstractions, the programming model is somewhat inflexible.

Frenetic [5] proposes a different kind of language design built
around a combination of (1) a declarative query language with
an SQL-like syntax, (2) a functional stream-processing language,
and (3) a specification language for describing packet forward-
ing. The query language provides a declarative means for moni-
toring network state. The functional component provides a flex-
ible way to manage, combine, process and manipulate the data
generated by network measurement or other sources. The third
component allows the programmer to generate arbitrary packet-
forwarding policies at a high level of abstraction. The Frenetic run-
time system [11] removes the burden of considering the interac-
tions between packet-monitoring policies generated by queries and
the packet forwarding policies generated by the third component.

In this paper, we present the preliminary design of a new lan-
guage, called Flog that combines ideas found in both FML and in
Frenetic. First, from FML, we adopt the idea of using logic pro-
gramming as the central paradigm for controlling software-defined
networks. Logic programming appears to be a good fit for this
domain because of the success of FML and because so much of
SDN programming is table-driven collection and processing of net-
work statistics. We were also inspired by the success of recent
work on construction of distributed applications, network proto-
cols and overlay networks using logic programming languages like
NDlog [9], Overlog [8], Dedalus [3] and Bloom [2]. Each of these
systems make it possible to construct powerful distributed applica-
tions in very few lines of code. Our work differs from these latter
efforts primarily due to the fact that we have specialized the seman-
tics and implementation of our language for use in the context of
software-defined networks.

Second, from Frenetic, we adopt the idea that typical controller
programs may be factored in to three key components: (1) a mech-
anism for querying network state, (2) a mechanism for processing
data gleaned from queries and other sources and (3) a component
for generating packet-forwarding policies that our underlying run
time system can automatically push out to the network of switches
for us.

In the following sections, we describe our preliminary work on
the development of Flog.

2. Flog: An SDN Logic Programming Language
Flog is designed as an event-driven, forward-chaining logic pro-
gramming language. Intuitively, each time a network event occurs,
the logic program executes. Execution of the logic program has
two effects: (1) it generates a packet-forwarding policy that is sub-
sequently compiled and deployed on switches, and (2) it generates
some state (a set of relations) that is used to help drive the logic
program when the next network event is processed. The following
paragraphs describe the major components of any Flog program.

Network Events. Controllers for software-defined networks pro-
cess many different kinds of events: switches come online and go
offline; ports on switches become active or inactive; packets ar-
rive at the controller and require handling; statistics gathered by
switches arrive and require processing. We believe our basic infras-
tructure should be able to accomodate any of these network events,
but this paper, we consider just one type of network event: packet
arrival at the controller.

In order to define the kinds of packets that a particular applica-
tion is interested in (and hence should be forwarded to the con-
troller), the programmer defines a flow identification rule. Such
rules have the following form.

flow(h1=X1,h2=X2,...), constraints --> rel(X1,X2,...).

The keyword flow identifies the fact that this is a flow identifica-
tion rule. Each of h1, h2, etc.. are the names of particular packet
fields such as srcip (the source IP address), dstip (the destina-
tion IP address), vlan (the VLAN tag), etc. The capitalized X1, X2,
etc. are (user-defined) logic variables. The effect of such a rule is to
generate the tuple rel(X1,X2,...) for every packet detected in
the network with a unique set of values (X1,X2,...) in the given
fields such that the constraints hold. For example, this rule:

flow(srcip=IP,vlan=V), V > 0 --> myvlans(IP,V).

will generate a network event every time a packet with a new srcip-
vlan tag pair is detected in the network, provided that the vlan tag
is greater than 0. When such a network event generated, the rest of
the logic program will be executed. The initial data for the logic
program will include the tuple myvlans(IP,V).

Note that if two successive packets, both with identical srcip
and vlan tags are detected, the logic program will only run once
– the first time. That first run should generate a forwarding policy
capable of handling successive packets of the same kind. This se-
mantics is similar to the semantics adopted by Frenetic’s Limit(1)
policies [5]. This default strategy ensures that at most one packet
per flow must go to the controller – an important factor as packets
that are processed at the controller suffer orders of magnitude more
latency than packets processed in hardware on switches. One way
to override this default strategy is to use the special split(field)
constraint in a flow identification rule. The split(field) con-
straint declares that a flow is over (i.e., it is split in half) and that
additional packets can come to the controller whenever the value
in the specified field changes. This idea is also adopted directly
from Frenetic. We will illustrate the use of split more concretely
in the next section.

Information Processing. After identifying network events, a
Flog programmer writes a logic program to process the facts gen-
erated by such events. A typical logic program has multiple logic
inference rules and any one of these rules may be triggered at any
point in time to infer new facts from existing facts. Tthis process
continues until no new fact can be derived, in which case this exe-

cution halts. In Flog, similar to Dedalus [3], there are two kinds of
logic programming rules that may be used for information process-
ing. The first kind of rule, written

fact1, fact2, ... --> factn

is a very standard datalog-like rule. When fact1, fact2, ..., match
facts in the current database, factn is generated and added to the
current database. The second kind of rule is written as follows.

fact1, fact2, ... +-> factn

Like the first rule, when fact1, fact2, ..., match facts in the
current database, factn is generated and added to the current
database. However, in addition, factn is copied in to a new
database, which will be used the next time the logic program is
executed on the subsequent network event.1 It is through this sec-
ond sort of rule that state persists from one iteration to the next. All
facts not explicitly saved through this mechanism are deleted when
the processing required for the current network event is complete.

Policy Generation. The final component of a Flog program in-
volves generating a routing policy for network switches. To specify
the switch policy, we use the following syntax.

h1(F1), h2(F2), ... |> action, level(i)

The constraints on the left of the |> specify the kinds of packets
that match the packet-forwarding rule. They do so by specifying
the packet fields (and switch and ports) that match the rule. The
action on the right of the |> specifies where to forward or flood
the packets or how to modify them. The level specifies the priority
of the rule.

3. Examples
Now that we have outlined the main components of a Flog program,
we illustrate its use through a couple of simple example programs.

3.1 Stateful Firewall
A stateful firewall is a common device used to help protect a private
corporate domain from malicious outsiders. The key idea is that the
corporate domain is able to send any traffic it chooses to the outside
world and an entity in the outside world is only allowed to send
traffic in to the coporate domain if the corporate domain has first
sent it a packet. To model this situation, we assume the network
we wish to control contains just one switch with two ports. The
external world is connected to port 1; the internal corporate domain
is connected to port 2. By default, any packet that arrives on port 2
is routed across the switch and out port 1. In addition, the stateful
firewall remembers the destination IP of such a packet. Any packet
that arrives on port 1 is dropped unless the stateful firewall sees
that the source IP of the packet matches one of the IPs that it has
remembered. In this latter case, it forwards the packet across the
switch and out port 2.

The Flog program in Figure 1 shows how to implement this
application in a few lines of code. The first line declares that each
packet with a unique destination IP address arriving at port 2 should
be sent to the controller and be processed by the language run-
time system. When such a packet is processed, the run-time system
extracts the destination IP address IP from the packet and stores it
in the seen relation.

1 Sometimes, it is convenient to save a fact away for future use, but one does
not want it to be used in the current derivation. If that is the case, one may
use a slightly different operation written ++>. Rules written with +-> are
actually syntactic sugar for a pair of a standard rule --> and a “next time
step” rule ++>.

Network Events
flow(dstip=IP), inport=2 --> seen(IP).

Information Processing
seen(IP) +-> allow(IP).
allow(IP) +-> allow(IP).

Policy Generation
inport(2) |> fwd(1), level(0).

allow(IP) -->
srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch
An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References
[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events
flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing
seen(IP, P) +-> learn(IP, P).
learn(IP, P) +-> learn(IP, P).

Policy Generation
|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events
flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing
seen(IP, P) +-> learn(IP, P).
seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation
* |> flood, level(0).

seen(IP, P) -->
dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->
dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

	Introduction
	Flog: An SDN Logic Programming Language
	Examples
	Stateful Firewall
	Ethernet Learning Switch

