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TradiFonal	
  networks	
  
•  	
  TradiFonal	
  network	
  elements	
  -­‐	
  special	
  purpose	
  devices	
  running	
  

distributed	
  algorithms.	
  

Control	
  Plane	
  –	
  Complex	
  Distributed	
  algorithms	
  	
  

Data	
  Plane	
  –	
  Simple	
  packet	
  forwarding	
  	
  

Operator:	
  
-­‐	
  Monitors	
  traffic	
  	
  
-­‐	
  IdenFfies	
  threats	
  
-­‐	
  Indirectly	
  configures	
  	
  

	
  policy	
  
	
  



TradiFonal	
  networks	
  
•  	
  Managing	
  a	
  network	
  is	
  hard	
  

–  Routers	
  with	
  millions	
  of	
  lines	
  of	
  code	
  
–  Running	
  complex	
  distributed	
  protocols	
  
–  Connected	
  to	
  a	
  diverse	
  set	
  of	
  middleboxes	
  

•  OperaFng	
  a	
  network	
  is	
  expensive	
  
–  More	
  than	
  half	
  the	
  cost	
  of	
  a	
  network	
  
–  Manual	
  operator	
  errors	
  cause	
  most	
  outages	
  

•  TradiFonally	
  hard	
  to	
  innovate	
  
–  Closed	
  equipment	
  with	
  vendor	
  specific	
  interfaces	
  
–  Ossified	
  evoluFon	
  
–  Few	
  people	
  can	
  make	
  changes	
  (say,	
  CISCO	
  cerFfied)	
  
	
  
	
  



What	
  is	
  a	
  So1ware-­‐Defined	
  Network?	
  

Switches!

Smart!
Control!

Dumb,!
fast!

Controller	
  Machine	
  
Arbitrary	
  program	
  implements	
  control	
  plane	
  funcFonality:	
  
•  Tracks	
  network	
  topology	
  
•  Monitors	
  traffic	
  
•  Installs	
  rules	
  to	
  block	
  or	
  forward	
  traffic.	
  



Openflow	
  Switches	
  
•  Switch	
  packet-­‐handling	
  rules	
  :	
  <pa1ern,	
  ac3on,	
  priority>	
  	
  

–  Pa1ern:	
  match	
  packet	
  header	
  bits	
  
–  Ac3on:	
  drop,	
  forward,	
  modify,	
  send	
  to	
  controller	
  	
  
–  Priority:	
  disambiguate	
  overlapping	
  pa=erns	
  
–  Counters:	
  #bytes	
  and	
  #packets	
  
 

Flow	
  Table	
  

Pa1ern	
   Ac3on	
   Bytes	
   Packets	
  

01010	
   Drop	
   200	
   10	
  

010*	
   Forward(n)	
   100	
   3	
  

011*	
   Controller	
   0	
   0	
  

priority	
  



Industry	
  Thrust	
  

•  Everyone has signed on 
–  Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche 

Telekom 
•  New applications 

–  Host mobility 
–  Server load balancing 
–  Network virtualization 
–  Dynamic access control 
–  Energy-efficiency 

•  Real deployments 
–  Google’s usage in a Wide Area Network 
–  Nicira, acquired by VMWare 



So1ware-­‐Defined	
  Networks	
  

The	
  Good	
  
•  Simple	
  data	
  plane	
  abstracFon	
  
•  Logically-­‐centralized	
  controller	
  
•  Direct	
  control	
  over	
  switch	
  policies	
  
	
  

Images	
  by	
  Billy	
  Perkins	
  

The	
  Bad	
  
• 	
  	
  Low-­‐level	
  programming	
  interface	
  
• 	
  	
  FuncFonality	
  Fed	
  to	
  hardware	
  
• 	
  	
  Explicit	
  resource	
  control	
  

The Ugly 
• 	
  	
  Non-­‐modular,	
  non-­‐composiFonal	
  
• 	
  	
  Programmer	
  faced	
  with	
  challenging	
  
distributed	
  programming	
  problem	
  



Programming abstractions!

Programming	
  the	
  controller	
  



Programming	
  the	
  controller	
  

Application modules in software!



Stateful	
  Firewall	
  

2 1 

Let packets from external hosts in, 
only when spoken to"

External world"

Internal 
network"

Controller"
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   Priority	
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1.	
  Flow	
  IdenFficaFon	
  

•  	
  Events	
  :	
  packet-­‐ins,	
  switches	
  and	
  ports	
  go	
  online/offline.	
  
•  	
  Flow	
  idenFficaFon	
  rule	
  

•  Example	
  :	
  	
  

 

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

# Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

# Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

# Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

# Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

# Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility
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flow(h1=X1,h2=X2,...), constraints --> rel(X1,X2,...)!

flow(srcip=IP, vlan=V), V > 0 --> myvlans(IP,V)!



2.	
  Update	
  Controller	
  State	
  

•  	
  A	
  logic	
  program	
  to	
  process	
  the	
  monitored	
  network-­‐events	
  (base	
  facts)	
  
•  	
  Has	
  mulFple	
  inference	
  rules	
  for	
  deriving	
  new	
  facts	
  
•  	
  Two	
  kinds	
  of	
  inference	
  rules	
  
	
  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

# Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

# Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

# Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

# Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

# Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility
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fact1, fact2, ... --> factn !
	
  	
  	
  	
  	
  	
   	
  <factn	
  generated	
  and	
  added	
  to	
  current	
  database>!

fact1, fact2, ...  +-> factn !
	
  	
  	
  	
  	
  	
   	
  <factn	
  added	
  to	
  a	
  database	
  which	
  is	
  used	
  in	
  the	
  next	
  epoch>!



3.	
  Specifying	
  Policy	
  

•  	
  Generate	
  a	
  forwarding	
  policy	
  for	
  the	
  switches	
  

•  Gives	
  the	
  pa=ern,	
  acFon	
  and	
  the	
  priority	
  for	
  the	
  switch	
  rules	
  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

# Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

# Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

# Network Events
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# Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

# Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).
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dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility
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 fact(V1, V2 …) -> pattern(V1,V2…)|> action, level(i)!



Stateful	
  Firewall	
  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)
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What	
  is	
  Flog?	
  
•  An	
  event-­‐driven,	
  forward	
  chaining	
  logic	
  programming	
  language	
  
•  Has	
  three	
  effects	
  

–  	
  Executed	
  every	
  Fme	
  a	
  specific	
  network	
  event	
  occurs	
  (epoch)	
  
–  	
  Updates	
  the	
  state	
  (tables)	
  at	
  the	
  controller.	
  
–  	
  Generates	
  a	
  forwarding	
  policy	
  based	
  on	
  the	
  controller	
  state.	
  

•  	
  Why	
  logic	
  programming?	
  
–  	
  Good	
  for	
  table-­‐driven	
  collecFon	
  and	
  processing	
  of	
  network	
  staFsFcs	
  
–  	
  Inspired	
  by	
  success	
  of	
  NDlog,	
  Overlog,	
  Dedalus,	
  Bloom	
  
–  	
  Good	
  for	
  incremental	
  updates	
  to	
  state.	
  

•  	
  Specialized	
  Logic	
  Programming	
  in	
  the	
  context	
  of	
  SDNs	
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Simple	
  Learning	
  Switch	
  	
  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

# Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

# Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

# Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

# Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

# Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility
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Learning	
  Switch	
  With	
  Mobility	
  

# Network Events

flow(dstip=IP), inport=2 --> seen(IP).

# Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

# Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).
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# Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)
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Related	
  Work	
  
•  	
  NOX,	
  Beacon	
  :	
  low-­‐level,	
  imperaFve,	
  event	
  driven	
  
•  	
  install,	
  uninstall	
  forwarding	
  rules	
  directly	
  on	
  the	
  switch	
  
•  	
  FML	
  :	
  high-­‐level	
  language	
  for	
  SDN	
  based	
  on	
  Datalog	
  

–  	
  Can	
  menFon	
  the	
  kinds	
  of	
  flows	
  to	
  be	
  allowed/denied.	
  
–  	
  not	
  flexible,	
  need	
  to	
  use	
  other	
  languages	
  for	
  stateful	
  computaFon	
  

•  FreneFc	
  provides	
  a	
  combinaFon	
  of	
  
–  (1)	
  a	
  declaraFve	
  query	
  language	
  with	
  an	
  SQL-­‐like	
  syntax	
  for	
  monitoring	
  

packets	
  
–  (2)	
  a	
  funcFonal	
  packet	
  stream-­‐processing	
  language,	
  and	
  	
  
–  (3)	
  a	
  specificaFon	
  language	
  for	
  describing	
  packet	
  forwarding	
  

•  Flog	
  -­‐	
  Best	
  of	
  both	
  worlds	
  from	
  FML	
  and	
  FreneFc	
  



Conclusion	
  

FreneFc	
  Run-­‐Fme	
  System	
  

FreneFc	
  
Program	
  

Flog	
  
Program	
  

•  Programming	
  abstracFons	
  for	
  So1ware-­‐Defined	
  Networking	
  
•  FLOG	
  -­‐	
  Logic	
  Programming	
  based	
  language	
  for	
  programming	
  SDN	
  

controllers	
  
•  A	
  Flog	
  program	
  has	
  three	
  important	
  components	
  

u Network	
  events	
  
u  InformaFon	
  processing	
  
u Policy	
  generaFon	
  

•  Future	
  Work	
  
u Full	
  fledged	
  compiler/run	
  Fme	
  
u Support	
  for	
  incremental	
  policy	
  updates	
  

	
  
	
  


