Flog : Logic Programming for

Software Defined Networks

Naga Praveen Katta,
Jennifer Rexford, David Walker
Princeton University

frenetic >

Traditional networks

* Traditional network elements - special purpose devices running
distributed algorithms.

@
. ¥
")

Operator:

- Monitors traffic

- Identifies threats

- Indirectly configures

policy

- Control Plane — Complex Distributed algorithms
== _s -
—— Data Plane — Simple packet forwarding

L4

Traditional networks

* Managing a network is hard
— Routers with millions of lines of code
— Running complex distributed protocols
— Connected to a diverse set of middleboxes

* QOperating a network is expensive
— More than half the cost of a network
— Manual operator errors cause most outages

* Traditionally hard to innovate
— Closed equipment with vendor specific interfaces

— Ossified evolution
— Few people can make changes (say, CISCO certified)

What is a Software-Defined Network?

Controller Machine
Arbitrary program implements control plane functionality:

. Tracks network topology
. Monitors traffic
. Installs rules to block or forward traffic.

Smart
Control

Openflow Switches

e Switch packet-handling rules : <pattern, action, priority>
— Pattern: match packet header bits
— Action: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns
— Counters: #bytes and #packets

==
Flow Table
e D v e
01010 Drop
010* Forward(n) 100 3
011* Controller 0 0

Industry Thrust

OPEN NETWORKING

« Everyone has signed on FOUNDATION
— Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche
Telekom

 New applications

— Host mobility Q MFJ@W

— Server load balancing
— Network virtualization ONS

— Dynamic access control I3

~ -~

— Energy-efficiency OPEN NETWORKING SUMMIT
« Real deployments

— Google’s usage in a Wide Area Network
— Nicira, acquired by VMWare

Nnicira

Software-Defined Networks

The Good

* Simple data plane abstraction

* Logically-centralized controller

* Direct control over switch policies

The Bad

* Low-level programming interface
® Functionality tied to hardware

* Explicit resource control

The Ugly

®* Non-modular, non-compositional

* Programmer faced with challenging
distributed programming problem

Programming the controller

Programming abstractions

~

Application modules in software

~
~
~
) ~
~
~
& >
~

S

Stateful Firewall

Controller

Internal
network

External world

Let packets from external hosts in,
only when spoken to

Stateful Firewall

Internal
network

Inport(2) Fwd(1)

Stateful Firewall

Internal
network

Cpater | cn | proy

Inport(2) Fwd(1) 0

Stateful Firewall

Internal
network

Srcip(ip1), inport(1) |>
fwd(2)

Cpater | cn | proy

Inport(2) Fwd(1) 0

Stateful Firewall

Internal
network

Cpater | cn | proy

Inport(2) Fwd(1) 0

Srcip(ip1)? Fwd(2) 0
inport(1)

Stateful Firewall

Internal
network

Cpater | cn | proy

Inport(2) Fwd(1) 0

Srcip(ip1)? Fwd(2) 0
inport(1)

1. Flow Identification

Network Events
flow(dstip=IP), inport=2 --> seen(IP).

* Events : packet-ins, switches and ports go online/offline.
 Flow identification rule

flow(hl=X1,h2=X2,...), constraints --> rel(X1,X2,...)

e Example:

flow(srcip=IP, vlan=V), V > 0 --> myvlans(IP,V)

2. Update Controller State

Information Processing
seen(IP) +-> allow(IP).
allow(IP) +-> allow(IP).

* Alogic program to process the monitored network-events (base facts)
* Has multiple inference rules for deriving new facts
 Two kinds of inference rules

factl, fact2, ... --> factn
<factn generated and added to current database>

factl, fact2, ... +-> factn
<factn added to a database which is used in the next epoch>

3. Specifying Policy

Policy Generation
inport(2) [|> fwd(1), level(O).

allow(IP) -->
srcip(IP), inport(1l) [> fwd(2), level(0).

 Generate a forwarding policy for the switches

fact(Vvl, V2 ..) -> pattern(V1,V2..)|> action, level(i)

* Gives the pattern, action and the priority for the switch rules

Stateful Firewall

Network Events
flow(dstip=IP), inport=2 --> seen(IP).

Information Processing
seen(IP) +-> allow(IP).
allow(IP) +-> allow(IP).

Policy Generation
inport(2) |> fwd(1l), level(O0).

allow(IP) -->
srcip(IP), inport(1l) [> fwd(2), level(O).

What is Flog?

An event-driven, forward chaining logic programming language

Has three effects
— Executed every time a specific network event occurs (epoch)
— Updates the state (tables) at the controller.
— Generates a forwarding policy based on the controller state.

Why logic programming?

— Good for table-driven collection and processing of network statistics
— Inspired by success of NDlog, Overlog, Dedalus, Bloom

— Good for incremental updates to state.

Specialized Logic Programming in the context of SDNs

Simple Learning Switch

Simple Learning Switch

Simple Learning Switch

Simple Learning Switch

Simple Learning Switch

Learn

Simple Learning Switch

Learn

Simple Learning Switch

Learn

Simple Learning Switch

Network Events
flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing
seen(IP, P) +-> learn(IP, P).
learn(IP, P) +-> learn(IP, P).

Policy Generation
|> flood, level(O0).

learn(IP, P) --> dstip(IP) [> fwd(P), level(1l)

Learning Switch With Mobility

Network Events
flow(scrip=IP, inport=P), split(inport) --> seen(IP, P)

Information Processing
seen(IP, P) +-> learn(IP, P).
seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’)

Policy Generation
* |> flood, level(O0).

seen(IP, P) -->
dst (IP) |> fwd(P), level(l).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->
dst (IP’) |> fwd(P’), level(1).

Related Work

* NOX, Beacon : low-level, imperative, event driven

install, uninstall forwarding rules directly on the switch

FML : high-level language for SDN based on Datalog
— Can mention the kinds of flows to be allowed/denied.
— not flexible, need to use other languages for stateful computation

Frenetic provides a combination of

— (1) a declarative query language with an SQL-like syntax for monitoring
packets

— (2) a functional packet stream-processing language, and
— (3) a specification language for describing packet forwarding

Flog - Best of both worlds from FML and Frenetic

Conclusion

* Programming abstractions for Software-Defined Networking
* FLOG - Logic Programming based language for programming SDN
controllers
* A Flog program has three important components
€ Network events
@ Information processing
@ Policy generation

Flog ﬁ Frenetic

Program Program

* Future Work
@ Full fledged compiler/run time
@ Support for incremental policy updates

