
Flog	
 :	
 Logic	
 Programming	
 for	

So1ware	
 Defined	
 Networks	

Naga	
 Praveen	
 Ka=a,	
 	

Jennifer	
 Rexford,	
 David	
 Walker	

Princeton	
 University	

TradiFonal	
 networks	

•  	
 TradiFonal	
 network	
 elements	
 -­‐	
 special	
 purpose	
 devices	
 running	

distributed	
 algorithms.	

Control	
 Plane	
 –	
 Complex	
 Distributed	
 algorithms	
 	

Data	
 Plane	
 –	
 Simple	
 packet	
 forwarding	
 	

Operator:	

-­‐	
 Monitors	
 traffic	
 	

-­‐	
 IdenFfies	
 threats	

-­‐	
 Indirectly	
 configures	
 	

	
 policy	

	

TradiFonal	
 networks	

•  	
 Managing	
 a	
 network	
 is	
 hard	

–  Routers	
 with	
 millions	
 of	
 lines	
 of	
 code	

–  Running	
 complex	
 distributed	
 protocols	

–  Connected	
 to	
 a	
 diverse	
 set	
 of	
 middleboxes	

•  OperaFng	
 a	
 network	
 is	
 expensive	

–  More	
 than	
 half	
 the	
 cost	
 of	
 a	
 network	

–  Manual	
 operator	
 errors	
 cause	
 most	
 outages	

•  TradiFonally	
 hard	
 to	
 innovate	

–  Closed	
 equipment	
 with	
 vendor	
 specific	
 interfaces	

–  Ossified	
 evoluFon	

–  Few	
 people	
 can	
 make	
 changes	
 (say,	
 CISCO	
 cerFfied)	

	

	

What	
 is	
 a	
 So1ware-­‐Defined	
 Network?	

Switches!

Smart!
Control!

Dumb,!
fast!

Controller	
 Machine	

Arbitrary	
 program	
 implements	
 control	
 plane	
 funcFonality:	

•  Tracks	
 network	
 topology	

•  Monitors	
 traffic	

•  Installs	
 rules	
 to	
 block	
 or	
 forward	
 traffic.	

Openflow	
 Switches	

•  Switch	
 packet-­‐handling	
 rules	
 :	
 <pa1ern,	
 ac3on,	
 priority>	
 	

–  Pa1ern:	
 match	
 packet	
 header	
 bits	

–  Ac3on:	
 drop,	
 forward,	
 modify,	
 send	
 to	
 controller	
 	

–  Priority:	
 disambiguate	
 overlapping	
 pa=erns	

–  Counters:	
 #bytes	
 and	
 #packets	

Flow	
 Table	

Pa1ern	
 Ac3on	
 Bytes	
 Packets	

01010	
 Drop	
 200	
 10	

010*	
 Forward(n)	
 100	
 3	

011*	
 Controller	
 0	
 0	

priority	

Industry	
 Thrust	

•  Everyone has signed on
–  Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche

Telekom
•  New applications

–  Host mobility
–  Server load balancing
–  Network virtualization
–  Dynamic access control
–  Energy-efficiency

•  Real deployments
–  Google’s usage in a Wide Area Network
–  Nicira, acquired by VMWare

So1ware-­‐Defined	
 Networks	

The	
 Good	

•  Simple	
 data	
 plane	
 abstracFon	

•  Logically-­‐centralized	
 controller	

•  Direct	
 control	
 over	
 switch	
 policies	

	

Images	
 by	
 Billy	
 Perkins	

The	
 Bad	

• 	
 	
 Low-­‐level	
 programming	
 interface	

• 	
 	
 FuncFonality	
 Fed	
 to	
 hardware	

• 	
 	
 Explicit	
 resource	
 control	

The Ugly
• 	
 	
 Non-­‐modular,	
 non-­‐composiFonal	

• 	
 	
 Programmer	
 faced	
 with	
 challenging	

distributed	
 programming	
 problem	

Programming abstractions!

Programming	
 the	
 controller	

Programming	
 the	
 controller	

Application modules in software!

Stateful	
 Firewall	

2 1

Let packets from external hosts in,
only when spoken to"

External world"

Internal
network"

Controller"

Stateful	
 Firewall	

2 1

Internal
network"

ip1	

Pa1ern	
 Ac3on	
 Priority	

Inport(2)	
 Fwd(1)	
 0	

Allow	

ip1	

Stateful	
 Firewall	

2 1

Internal
network"

ip1	

Pa1ern	
 Ac3on	
 Priority	

Inport(2)	
 Fwd(1)	
 0	

Allow	

ip1	
 ip1	

Stateful	
 Firewall	

2 1

Internal
network"

Pa1ern	
 Ac3on	
 Priority	

Inport(2)	
 Fwd(1)	
 0	

Allow	

ip1	

ip1	

Srcip(ip1),	
 inport(1)	
 |>	

fwd(2)	

Stateful	
 Firewall	

2 1

Internal
network"

Pa1ern	
 Ac3on	
 Priority	

Inport(2)	
 Fwd(1)	
 0	

Srcip(ip1)^
inport(1)	

Fwd(2)	
 0	

Allow	

ip1	

ip1	

Stateful	
 Firewall	

2 1

Internal
network"

ip1	

Pa1ern	
 Ac3on	
 Priority	

Inport(2)	
 Fwd(1)	
 0	

Srcip(ip1)^
inport(1)	

Fwd(2)	
 0	

Allow	

ip1	

1.	
 Flow	
 IdenFficaFon	

•  	
 Events	
 :	
 packet-­‐ins,	
 switches	
 and	
 ports	
 go	
 online/offline.	

•  	
 Flow	
 idenFficaFon	
 rule	

•  Example	
 :	
 	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

flow(h1=X1,h2=X2,...), constraints --> rel(X1,X2,...)!

flow(srcip=IP, vlan=V), V > 0 --> myvlans(IP,V)!

2.	
 Update	
 Controller	
 State	

•  	
 A	
 logic	
 program	
 to	
 process	
 the	
 monitored	
 network-­‐events	
 (base	
 facts)	

•  	
 Has	
 mulFple	
 inference	
 rules	
 for	
 deriving	
 new	
 facts	

•  	
 Two	
 kinds	
 of	
 inference	
 rules	

	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

fact1, fact2, ... --> factn !
	
 	
 	
 	
 	
 	
 	
 <factn	
 generated	
 and	
 added	
 to	
 current	
 database>!

fact1, fact2, ... +-> factn !
	
 	
 	
 	
 	
 	
 	
 <factn	
 added	
 to	
 a	
 database	
 which	
 is	
 used	
 in	
 the	
 next	
 epoch>!

3.	
 Specifying	
 Policy	

•  	
 Generate	
 a	
 forwarding	
 policy	
 for	
 the	
 switches	

•  Gives	
 the	
 pa=ern,	
 acFon	
 and	
 the	
 priority	
 for	
 the	
 switch	
 rules	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

 fact(V1, V2 …) -> pattern(V1,V2…)|> action, level(i)!

Stateful	
 Firewall	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

What	
 is	
 Flog?	

•  An	
 event-­‐driven,	
 forward	
 chaining	
 logic	
 programming	
 language	

•  Has	
 three	
 effects	

–  	
 Executed	
 every	
 Fme	
 a	
 specific	
 network	
 event	
 occurs	
 (epoch)	

–  	
 Updates	
 the	
 state	
 (tables)	
 at	
 the	
 controller.	

–  	
 Generates	
 a	
 forwarding	
 policy	
 based	
 on	
 the	
 controller	
 state.	

•  	
 Why	
 logic	
 programming?	

–  	
 Good	
 for	
 table-­‐driven	
 collecFon	
 and	
 processing	
 of	
 network	
 staFsFcs	

–  	
 Inspired	
 by	
 success	
 of	
 NDlog,	
 Overlog,	
 Dedalus,	
 Bloom	

–  	
 Good	
 for	
 incremental	
 updates	
 to	
 state.	

•  	
 Specialized	
 Logic	
 Programming	
 in	
 the	
 context	
 of	
 SDNs	

Simple	
 Learning	
 Switch	
 	

ip1	

ip2	

ip3	

3

2
1

Simple	
 Learning	
 Switch	
 	

ip1	

ip2	

ip3	

3

2
1

*	
 |>	
 flood	

Learn	

Simple	
 Learning	
 Switch	
 	

ip1	

ip2	

ip3	

3

2
1

ip3	

Learn	

Simple	
 Learning	
 Switch	
 	

ip1	

ip2	

ip3	

3

2
1

ip3	

ip3	

ip3	

Learn	

ip1	

ip2	

ip3	

3

2
1

Simple	
 Learning	
 Switch	
 	

Learn	

(Ip1,	
 1)	

DsFp(ip1)	
 |>	
 fwd(1)	

ip1	

ip2	

ip3	

3

2
1

ip1	

Simple	
 Learning	
 Switch	
 	

Learn	

(Ip1,	
 1)	

ip1	

ip2	

ip3	

3

2
1

Simple	
 Learning	
 Switch	
 	

Learn	

(Ip1,	
 1)	

(Ip3,	
 3)	

Simple	
 Learning	
 Switch	
 	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

Learning	
 Switch	
 With	
 Mobility	

Network Events

flow(dstip=IP), inport=2 --> seen(IP).

Information Processing

seen(IP) +-> allow(IP).

allow(IP) +-> allow(IP).

Policy Generation

inport(2) |> fwd(1), level(0).

allow(IP) -->

srcip(IP), inport(1) |> fwd(2), level(0).

Figure 1. Example application: Stateful Firewall

The next segment of the program describes the information
processing stage. This stage is responsible for saving away all IP
addresses that have been seen. It does so by using the temporal +->
logic rules to save the IP addresses in the unary relation allow. All
of the elements of the allow relation will be used in generating the
current packet-forwarding policy and are also saved away for use
when processing the next network event.

The last few lines of the program implement the policy gener-
ation stage. The first part installs a default packet-processing rule
that allows any traffic that comes in on port 2 to be forwarded out on
port 1. In addition, for any IP stored in the relation allow, the sec-
ond part of this stage generates a specific packet-forwarding rule
that states that all traffic appearing on port 1 of switch SW whose
srcip field is IP is forwarded across the switch and out port 2.

3.2 Ethernet Learning Switch

An ethernet learning switch dynamically learns the association
between hosts and ports as it sees traffic. It floods packets to
unknown destinations, but outputs packets to hosts with known
locations on the port the host is connected to.

Figure 2 gives the Flog program for a simple learning switch
where hosts are not mobile (i.e., they do not change the port on
the switch they are connected to). In this case, the program mon-
itors all the packets that arrive at the switch and groups them by
source IP and inport, storing this information in the seen relation.
In the information processing phase, the information is transferred
to the persistent learn database. The policy generation phase first
generates a low priority rule that unconditionally floods all pack-
ets that arrive at the switch. Then, based on information it has
learned, it generates higher priority rules that perform more pre-
cise forwarding. Specifically, for every learn(IP, P) fact in the
persistent database, the program generates a forwarding rule that
directs packets with destination IP out port P.

An interesting variant of the basic learning switch is presented
in Figure 3. In this case, we assume end hosts may be mobile.
For example, a host may be a phone or a laptop and may move
from one access point to another, thereby causing a change in the
port they are connected to. In this case, we need the special split
keyword that splits the flow whenever a host IP changes its inport
P. In the information processing phase, we retain learned IP-port
associations when they do not conflict with an IP-port association
that we have just seen and we generate specific forwarding rules
from all learned associations (provided the learned association has
not just been overrided by a newly learned association).

Acknowledgements. We would like to thank Rob Simmons for
several enlightening discussions and advice on logic programming.

References

[1] Beacon: A java-based OpenFlow control platform. See http://

www.beaconcontroller.net, December 2011.

Network Events

flow(scrip=IP, inport=P) --> seen(IP, P)

Information Processing

seen(IP, P) +-> learn(IP, P).

learn(IP, P) +-> learn(IP, P).

Policy Generation

|> flood, level(0).

learn(IP, P) --> dstip(IP) |> fwd(P), level(1).

Figure 2. Example : Ethernet learning switch without mobility

Network Events

flow(scrip=IP, inport=P), split(inport) --> seen(IP, P).

Information Processing

seen(IP, P) +-> learn(IP, P).

seen(IP, P), learn(IP’, P’), IP!=IP’ +-> learn(IP’,P’).

Policy Generation

* |> flood, level(0).

seen(IP, P) -->

dst(IP) |> fwd(P), level(1).

seen(IP, P), learn(IP’, P’), IP!=IP’ -->

dst(IP’) |> fwd(P’), level(1).

Figure 3. Example: Ethernet learning switch with mobility

[2] Peter Alvaro, Neil Conway, Joe Hellerstein, and William R. Marczak.
Consistency analysis in bloom: a calm and collected approach. In
Proceedings of CIDR ’11.

[3] Peter Alvaro, William Marczak, Neil Conway, Joseph M. Hellerstein,
David Maier, and Russell C Sears. Dedalus: Datalog in time and
space. Technical Report UCB/EECS-2009-173, EECS Department,
University of California, Berkeley, Dec 2009.

[4] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
August 2009.

[5] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In Proceedings of ICFP ’11.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n
Casado, Nick McKeown, and Scott Shenker. NOX: Towards an op-
erating system for networks. SIGCOMM CCR, 38(3), 2008.

[7] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C.
Mitchell, and Scott Shenker. Practical declarative network manage-
ment. In Proceedings of WREN ’09.

[8] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Mani-
atis, Timothy Roscoe, and Ion Stoica. Implementing declarative over-
lays. In Proceedings of SOSP, 2005.

[9] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ra-
makrishnan. Declarative routing: Extensible routing with declarative
queries. In Proceedings of SIGCOMM ’05.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM
CCR, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In Proceedings of POPL ’12.

Related	
 Work	

•  	
 NOX,	
 Beacon	
 :	
 low-­‐level,	
 imperaFve,	
 event	
 driven	

•  	
 install,	
 uninstall	
 forwarding	
 rules	
 directly	
 on	
 the	
 switch	

•  	
 FML	
 :	
 high-­‐level	
 language	
 for	
 SDN	
 based	
 on	
 Datalog	

–  	
 Can	
 menFon	
 the	
 kinds	
 of	
 flows	
 to	
 be	
 allowed/denied.	

–  	
 not	
 flexible,	
 need	
 to	
 use	
 other	
 languages	
 for	
 stateful	
 computaFon	

•  FreneFc	
 provides	
 a	
 combinaFon	
 of	

–  (1)	
 a	
 declaraFve	
 query	
 language	
 with	
 an	
 SQL-­‐like	
 syntax	
 for	
 monitoring	

packets	

–  (2)	
 a	
 funcFonal	
 packet	
 stream-­‐processing	
 language,	
 and	
 	

–  (3)	
 a	
 specificaFon	
 language	
 for	
 describing	
 packet	
 forwarding	

•  Flog	
 -­‐	
 Best	
 of	
 both	
 worlds	
 from	
 FML	
 and	
 FreneFc	

Conclusion	

FreneFc	
 Run-­‐Fme	
 System	

FreneFc	

Program	

Flog	

Program	

•  Programming	
 abstracFons	
 for	
 So1ware-­‐Defined	
 Networking	

•  FLOG	
 -­‐	
 Logic	
 Programming	
 based	
 language	
 for	
 programming	
 SDN	

controllers	

•  A	
 Flog	
 program	
 has	
 three	
 important	
 components	

u Network	
 events	

u  InformaFon	
 processing	

u Policy	
 generaFon	

•  Future	
 Work	

u Full	
 fledged	
 compiler/run	
 Fme	

u Support	
 for	
 incremental	
 policy	
 updates	

	

	

