frenetic >

A Network Programming Language

Nate Foster, Mike Freedman,

Rob Harrison, Chris Monsanto,
Jen Rexford, Alec Story, and Dave Walker

Traditional Networks

7 e
k /\/\5
AR AN

Operator:

C I S C O 5 Monitors traffic,

Configures policy

Control Plane (software):
Tracks topology; computes
routes; modifies data plane state

Data Plane (hardware):
Forwards, filters, buffers, tags,

Nate-limits; collects stats /

Software-Defined Networks

Idea: move control off of switches and onto a
separate, general-purpose computer.

Controller Machine
P Arbitrary program implements
control plane functionality:

/(' I 1410 | |? * Monitors traffic,
» Tracks topology,
Ci5cCo. » Selects routes,
Data Plane * Installs forwarding rules.

U J

@Opon:r‘.law Momentum

Everyone has signed on

Microsoft, Google, Cisco, Yahoo,
Facebook, Deutch Telekom,...

New Applications
= Host mobility
Virtualization

« Dynamic access control
« Energy-efficiency

Load balancing

Ope

< & %

Cisco Blog = Open at Cisco

Back to the future: the Open Networking Foundation

4
y

? 62@5@

Michael Enescu | March 29, 2011 at 2:17 pm PST

www.informationweek.... x \@

() www.informationweek.com/new

Along with o .
e O Big Switch Bets On OpenFlow, Network
opensourcd Virtualization
reminded
8’\0/ & Open Network Foundation © % || -
Tags & 3 C © www.nytimes.com/2011/03/22/technology/internet/22internet.html YRS

HOME PAGE | TODAY'S PAPER | VIDEO | MOST POPULAR | TIMES TOPICS

Ehe New YJork Tmes Internet

Subscribe: Home Delivery / Digital | Log In | Register Now | Help

Search All NYTimes.com
Go

WORLD US. NY./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION

Search Technology Inside Technology Bits

ARTS STYLE TRAVEL JOBS REALESTATE AUTOS

Personal Tech »

Go| | Internet | Start-Ups = Business Computing | Companies BIOg » Digital Cameras = Cellphones | [ALL PRODUCTS

Open Networking Foundation Pursues New Standards
By JOHN MARKOFF

Published: March 22, 2011

MOUNTAIN VIEW, Calif. — Acknowledging that so-called cloud

[CRT

will blur the disti between and & SIGNINTOE-
networks, about two dozen big information technology companies
plan to announce on Tuesday a new standards-setting group for &) PRINT
computer networking. @ REPRINTS
SHARE

@, Enlarge This Image The group, to be called the Open
2l Networking Foundation, hopes to help

dardize a set of technologies pi d at Stanford and
the University of California, Berkeley, and meant to make
small and large networks programmable in much the same
way that individual computers are.

Nick MeKeown of Stanford has hepes The changes, if widely adopted, would have implications
mfrso‘gi of the underpinnings of the for global telecommunications networks and large
corporate data centers, but also for small household
networks. The benefits, proponents say, would be more
flexible and secure networks that are less likely to suffer from congestion. Someday, they
say, networks might even be less expensive to build and operate.

The new approach could allow for setting up on-demand “express lanes” for voice and
data traffic that is time-sensitive. Or it might let big telecommunications companies, like
Verizon or AT&T, use software to combine several fiber optic backbones temporarily for
particularly heavy information loads and then have them automatically separate when a

Subscribe to Technology RSS Feeds

) Technology News. £) Bits Blog
D Intemet (3 Start-Ups) Personal Tech
O Business & Companies £) Pogue's Posts
Computing

MOST E-MAILED MOST VIEWED

. 1. Do You Suffer From Decision Fatigue?

2. OP-ED CONTRIBUTORS
Crashing the Tea Party

3. Schools Restore Fresh Cooking to the
Cafeteria
-

k:!

4. OP-ED CONTRIBUTOR
& Stop Coddling the Super-Rich
O~

5. Well: Are Crunches Worth the Effort?

F 6. CRITIC'S NOTEBOOK

Now Appearing in Chicago, a Restaurant in
Footlights

7. OP-ED COLUMNIST
Field of Dashed Dreams

8. Well: Really? The Claim: To Prevent
Migraines, Drink More Water

New Challenges

OpenFlow makes it possible to program the network,
but it does not make it easy!

= Provides a thin veneer over switch hardware
= Like programming in assembly

Our goal

« Develop new abstractions for programming networks
— More convenient

— More modular
— More reliable
— More secure

This Talk
N

OpenFlow in more depth
= Existing programming model and problems

Frenetic Language
= New abstractions for network programming

Frenetic Run-time System
= Implementation strategy and experience

OpenFlow Switches

Switches
e
[]

a 6@/ Open:lo .y A

Flow Table

mmm priority

01010 Drop 200
010* Forward(n) 100 3

Q1 * Controller 0 0 lj

OpenFlow Controllers (NOX)

/ NOX Program \

Network Events

* Packets

e Stats

* Topology changes

Controller D]l

/_/
1
1
1
1
1
1
1
[

— i —

Control Messages
* Install rules
RN * Uninstall rules

\ * Query counters /

E

g7 Switches

Typical OpenFlow Application

* Forwarding table miss ,

/
/

—

8 A
Controller D]l
y——— /
Network Events g

E7_

4

Control Messages
*(Un)install rules

\
\

y_— 1R g7 Switches

Problem I: Anti-Modular

Controller Application

Repeater Monitoring
Module Module

I

: P:Forward 1—2and 2 — 1 Q: Query web traffic :

P installed

Doesn’t work because repeater rules
too coarse-grained; monitoring rules
don’t forward

Anti-Modularity: A Closer Look

Repeater

\

/def switch_join(switch):
repeater(switch)

def repeater(switch):
patl = {in_port:1}
pat2 = {in_port:2}
install(switch,pat1,DEFAULT,None,[output(2)])

install(switch,pat2,DEFAULT,None,[output(1)])

\
Web Monitor

ﬂlef monitor(switch):

pat ={in_port:2,tp_src:80}
install(switch, pat, DEFAULT, None, [])
query_stats(switch, pat)

/

~

def stats_in(switch, xid, pattern, packets, bytes):

sleep(30)

print bytes

Kq uery_stats(switch, pattern)

10

Repeater/Monitor

@vitch_join(switch)
repeater_monitor(switch)

def repeater_monitor(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
pat2web = {in_port:2, tp_src:80}
Install(switch, pat1, DEFAULT, None, [output(2)])
install(switch, pat2web, HIGH, None, [output(1)])
install(switch, pat2, DEFAULT, None, [output(1)])
query_stats(switch, pat2web)

\

def stats_in(switch, xid, pattern, packets, bytes):

(30)

sleep
wystats(switch, pattern)

blue = from repeater
red = from web monitor
green = from neither

print bytes

Problem ll: Two-tiered Model

Tricky problem:
= Controller activity is driven
by packets

= For efficiency, applications
install rules to forward
packets in hardware

Controller D]l

S

;m !

N
N\

\ Constant questions:
AN = “Will that packet come to

\ :
\\ the controller and trigger
my computation?”
“Oris it already being
handled invisibly on the

switch?”

N
N\
S
N\
N

=

11

Problem lll: Network Race Conditions

A challenging sequence of events:
= Switch
— sends packet to controller
= Controller
— analyzes packet
— updates its state

— initiates installation of new
packet-processing rules

= Switch
— hasn’t received new rules
— sends new packets to
57 ’ controller
- - = Controller
— confused

— packets in the same flow
handled inconsistently

A4

Controller D]l
——
| — |

2

/
/

/

|\
\|

\
\

12

Three problems with a common cause
B

Three problems
= Anti-modular
= Two-tiered model
= Network race conditions

One cause
No effective abstractions for reading network state

13

The Solution
N

Separate network programming into two parts:

= Abstractions for querying network state
— Reads have no effect on forwarding policy
— Reads able to see every packet

= Abstractions for specifying a forwarding policy

— Forwarding policy must be separated from
implementation mechanism

A natural decomposition that mirrors two
fundamental tasks: monitoring and forwarding

14

This Talk
N

OpenFlow & Nox in more depth
« Existing programming model and problems

Frenetic Language
= New abstractions for network programming

Frenetic Run-time System
= Implementation strategy and experience

Frenetic Language
S

Abstractions for querying network state
= An integrated query language
— select, filter, group, sample sets of packets or statistics
— designed so that computation can occur on data plane

Abstractions for specifying a forwarding policy

= A functional stream processing library (based on FRP)
— generate streams of network policies
— transform, split, merge, filter policies and other streams

Implementation:
= A collection of Python libraries on top of NOX

15

Frenetic Queries

—

Goal: measure total web traffic on port 2, every 30 seconds

1

def web _query():
return (Select(sizes) *
Where (inport_fp(2) & srcport_fp(80)) *
Every(30))

Key Property: query semantics is independent of other program parts

16

Frenetic Forwarding Policies

=7

1 2

Goal: implement a repeater switch

rules = [Rule(inport_fp(1), [forward(2)]),
Rule(inport_fp(2), [forward(1)])]

def repeater():
return (SwitchJoin() >> Lift(lambda switch: {switch:rules}))

Key Property: Policy semantics independent of other queries/policies

17

Program Composition

Goal: implement both web monitoring and repeater

def host _query():

return (Select(counts) *
Where (inport_fp(1) *
GroupBy([srcmac]) *
Every(60))

def secure(host policy stream):

L S

def main():
web _query() >> Print()
secure(Merge(host_query(), repeater())) >> Register()

Key Property: queries and policies compose

18

This Talk
N

OpenFlow & Nox in more depth
« Existing programming model and problems

Frenetic Language
= New abstractions for network programming

Frenetic Run-time System
= Implementation strategy and experience

Frenetic System Overview

Frenetic User Program

High-level Language

= Integrated query language query,

query response,
status streams

) register policy
« Effective support for :
composition and reuse

[rechnmesyen |

Run-time System compile policies/
. . . ueries,

= Interprets queries, policies mstgu ules

= Installs rules

= Tracks stats

= Handles asynchronous events

manage stats,
filter packets,
process events

—

| =

Run-time Activities

Frenetic Program

Query Regqister
A)1 1 A
:

NOX

N\

Query : | HEEE
Interpreter . Update Stats
Policy [Monitoring |
Interpreter Loop

Che.ck Check Rules Do Actions
Subscribers

Frenetic Runtime System

NOX

[] Frenetic Program 0--} Dataflow in to Runtime [Runtime Module
O Nox <— Dataflow out from Runtime @ Runtime Data Structure

20

Preliminary Evaluation

Core Network Applications
= Learning Switch
= Spanning Tree
= Shortest path routing
= DHCP server
« Centralized ARP server
= Generic load balancer

Additional Applications

« Memcached query router
= Network scan detector
= DDOS defensive switch

Micro Benchmarks
= Coded in Frenetic and NOX

21

MicroBench: Lines of Code

200
180
160
140

Lines
Code 80 " Frenetic
60
20
HUB LSW HUB LSW HUB LSW

\)\ J | J
| | |

No monitoring Web Statistics Heavy Hitters \

Forwarding Policy: Monitoring Policy
HUB: Floods out other ports

LSW: Learning Switch 23

MicroBench: Controller Traffic
S

16
14
12
Traffic 10
to i ®NOX
Controller " Frenetic
(kB)]

HUB LSW HUB LSW HUB LSW
\)\) | J

| ! |

No monitoring Web Statistics Heavy Hitters w\

Forwarding Policy: Monitoring Policy
HUB: Floods out other ports

LSW: Learning Switch 24

Ongoing and Future Work

Performance evaluation & optimization

= Measure controller response time and network throughput
= Wildcard rules and proactive rule installation
= Support for parallelism

Program Analysis
= Establish key invariants

Hosts and Services
= Extend queries & controls to end hosts

More abstractions

= Virtual network topologies
= Network updates with improved semantics
25

Conclusion: An Analogy

Concern Assembly Languages Programming Languages

Resource Move values Install/ Declare/use Construct/
Allocation to/from uninstall rules program register
registers on switches variables policy

Coordination J Unregulated | Unregulated J Function calls Policies
calling rule managed managed
conventions installation J automatically | automatically

26

The Team

Chris Monsanto v Jen Rexford v Alec Story (&}

Dave Walker v

frenetic >

http://frenetic-lang.org

Implementation Options

Rule Granularity
= microflow (exact header match) I\

— simpler; more rules generated
«l wildcard (multiple header match in singl\e\(ule) I

— more complex; fewer rules{may be) generated\
Frenetic 1.0 ‘

Rule Installation
. lreactive (lazy) Frenetic 2.0 ‘

— first packet of each new flow goes t r

proactive (eager)

— new rules pushed to switches

20

