
Nate Foster, Mike Freedman,
Rob Harrison, Chris Monsanto,
Jen Rexford, Alec Story, and Dave Walker

A Network Programming Language

Traditional Networks

2

Data Plane (hardware):
Forwards, !lters, buffers, tags,
rate-limits; collects stats

Control Plane (software):
Tracks topology; computes
routes; modi!es data plane state

Operator:
Monitors traffic,
Con!gures policy

Software-De!ned Networks

Idea: move control off of switches and onto a
separate, general-purpose computer.

3

Data Plane

Controller Machine
Arbitrary program implements
control plane functionality:
•  Monitors traffic,
•  Tracks topology,
•  Selects routes,
•  Installs forwarding rules.

Momentum

Everyone has signed on
Microsoft, Google, Cisco, Yahoo,
Facebook, Deutch Telekom,…

New Applications
  Host mobility
  Virtualization
  Dynamic access control
  Energy-efficiency
  Load balancing

4

New Challenges

OpenFlow makes it possible to program the network,
but it does not make it easy!

  Provides a thin veneer over switch hardware
  Like programming in assembly

Our goal
  Develop new abstractions for programming networks

– More convenient
– More modular
– More reliable
– More secure

5

This Talk

OpenFlow in more depth
  Existing programming model and problems

Frenetic Language
  New abstractions for network programming

Frenetic Run-time System

  Implementation strategy and experience

OpenFlow Switches

6

Flow Table

Pattern Action Bytes Packets
01010 Drop 200 10

010* Forward(n) 100 3

011* Controller 0 0

priority

Switches

OpenFlow Controllers (NOX)

7

Controller

Network Events
•  Packets
•  Stats
•  Topology changes

Control Messages
•  Install rules
•  Uninstall rules
•  Query counters

NOX Program

Switches

Typical OpenFlow Application

Controller

Switches

Network Events
•  Forwarding table miss

Control Messages
• (Un)install rules

8

Problem I: Anti-Modular

9

Repeater
Module

Controller Application

P: Forward 1 → 2 and 2 → 1

1 2

Monitoring
Module

Q: Query web traffic

P installed

Doesn’t work because repeater rules
too coarse-grained; monitoring rules
don’t forward

Anti-Modularity: A Closer Look

def switch_join(switch):
 repeater(switch)

def repeater(switch):
 pat1 = {in_port:1}
 pat2 = {in_port:2}
 install(switch,pat1,DEFAULT,None,[output(2)])
 install(switch,pat2,DEFAULT,None,[output(1)])

def monitor(switch):
 pat = {in_port:2,tp_src:80}
 install(switch, pat, DEFAULT, None, [])
 query_stats(switch, pat)

def stats_in(switch, xid, pattern, packets, bytes):
 print bytes
 sleep(30)
 query_stats(switch, pattern)

Repeater

Web Monitor

def switch_join(switch)
 repeater_monitor(switch)

def repeater_monitor(switch):
 pat1 = {in_port:1}
 pat2 = {in_port:2}
 pat2web = {in_port:2, tp_src:80}
 Install(switch, pat1, DEFAULT, None, [output(2)])
 install(switch, pat2web, HIGH, None, [output(1)])
 install(switch, pat2, DEFAULT, None, [output(1)])
 query_stats(switch, pat2web)

def stats_in(switch, xid, pattern, packets, bytes):
 print bytes
 sleep(30)
 query_stats(switch, pattern)

Repeater/Monitor

blue = from repeater
red = from web monitor
green = from neither 10

Problem II: Two-tiered Model

Tricky problem:
  Controller activity is driven

by packets
  For efficiency, applications

install rules to forward
packets in hardware

Constant questions:
  “Will that packet come to

the controller and trigger
my computation?”

  “Or is it already being
handled invisibly on the
switch?”

11

Controller

Problem III: Network Race Conditions

A challenging sequence of events:
  Switch

–  sends packet to controller
  Controller

–  analyzes packet
–  updates its state
–  initiates installation of new

packet-processing rules
  Switch

–  hasn’t received new rules
–  sends new packets to

controller
  Controller

–  confused
–  packets in the same $ow

handled inconsistently
 12

Controller

Three problems with a common cause

Three problems
  Anti-modular
  Two-tiered model
  Network race conditions

One cause
No effective abstractions for reading network state

13

The Solution

Separate network programming into two parts:
  Abstractions for querying network state

– Reads have no effect on forwarding policy
– Reads able to see every packet

  Abstractions for specifying a forwarding policy
–  Forwarding policy must be separated from

implementation mechanism

A natural decomposition that mirrors two
fundamental tasks: monitoring and forwarding

14

This Talk

OpenFlow & Nox in more depth
  Existing programming model and problems

Frenetic Language
  New abstractions for network programming

Frenetic Run-time System

  Implementation strategy and experience

Frenetic Language

Abstractions for querying network state
  An integrated query language

– select, !lter, group, sample sets of packets or statistics
– designed so that computation can occur on data plane

Abstractions for specifying a forwarding policy
  A functional stream processing library (based on FRP)

– generate streams of network policies
– transform, split, merge, !lter policies and other streams

Implementation:
  A collection of Python libraries on top of NOX

15

Frenetic Queries

16

def	 web_query():	
	 	 return	 (Select(sizes)	 *	
	 	 	 	 	 	 	 	 	 	 Where(inport_fp(2)	 &	 srcport_fp(80))	 *	
	 	 	 	 	 	 	 	 	 	 Every(30))	

1 2

Goal: measure total web traffic on port 2, every 30 seconds

Key Property: query semantics is independent of other program parts

Frenetic Forwarding Policies

17

1 2

Goal: implement a repeater switch

rules	 =	 [Rule(inport_fp(1),	 [forward(2)]),	
	 	 	 	 	 	 	 	 	 Rule(inport_fp(2),	 [forward(1)])]	

def	 repeater():	
	 	 return	 (SwitchJoin()	 >>	 Lift(lambda	 switch:	 {switch:rules}))	

Key Property: Policy semantics independent of other queries/policies

Program Composition

18

def	 main():	
	 	 web_query()	 >>	 Print()	
	 	 repeater()	 >>	 Register()	

Key Property: queries and policies compose

Goal: implement both web monitoring and repeater

def	 host_query():	
	 	 return	 (Select(counts)	 *	 	
	 	 	 	 	 	 	 	 	 	 Where(inport_fp(1)	 *	
	 	 	 	 	 	 	 	 	 	 GroupBy([srcmac])	 *	
	 	 	 	 	 	 	 	 	 	 Every(60))	
	
def	 secure(host_policy_stream):	 ...	

def	 main():	
	 	 web_query()	 >>	 Print()	
 secure(Merge(host_query(),	 repeater()))	 >>	 Register()	

This Talk

OpenFlow & Nox in more depth
  Existing programming model and problems

Frenetic Language
  New abstractions for network programming

Frenetic Run-time System

  Implementation strategy and experience

Frenetic System Overview

High-level Language
  Integrated query language
  Effective support for

composition and reuse

Run-time System
  Interprets queries, policies
  Installs rules
  Tracks stats
  Handles asynchronous events

19

Frenetic User Program

Frenetic Run-time System

NOX

query,
register policy

query response,
status streams

compile policies/
queries,

install rules

manage stats,
!lter packets,
process events

Run-time Activities

NOX

20

Check Rules

Install Flow

Policy
Interpreter

Register

NOX

Frenetic Program

Frenetic Runtime System

Packet In

Frenetic Program
NOX

Runtime Module
Runtime Data Structure

Data$ow in to Runtime
Data$ow out from Runtime

Check
Subscribers

Query

Monitoring
Loop Stats Request

Update Stats Stats In

Send Packet

Query
Interpreter

Do Actions

Preliminary Evaluation

Core Network Applications
  Learning Switch
  Spanning Tree
  Shortest path routing
  DHCP server
  Centralized ARP server
  Generic load balancer

Additional Applications
  Memcached query router
  Network scan detector
  DDOS defensive switch

Micro Benchmarks
  Coded in Frenetic and NOX

21

MicroBench: Lines of Code

0
20
40
60
80

100
120
140
160
180
200

HUB LSW HUB LSW HUB LSW

NOX
Frenetic

23

No monitoring Heavy Hitters Web Statistics

Lines
of

Code

Forwarding Policy:
 HUB: Floods out other ports
 LSW: Learning Switch

Monitoring Policy

MicroBench: Controller Traffic

0

2

4

6

8

10

12

14

16

HUB LSW HUB LSW HUB LSW

NOX
Frenetic

24

Traffic
to

Controller
(kB)

Forwarding Policy:
 HUB: Floods out other ports
 LSW: Learning Switch

Monitoring Policy

No monitoring Heavy Hitters Web Statistics

Ongoing and Future Work

Performance evaluation & optimization
  Measure controller response time and network throughput
  Wildcard rules and proactive rule installation
  Support for parallelism

Program Analysis
  Establish key invariants

Hosts and Services
  Extend queries & controls to end hosts

More abstractions
  Virtual network topologies
  Network updates with improved semantics

25

Conclusion: An Analogy

26

Concern Assembly Languages Programming Languages
x86 NOX Haskell/ML Frenetic++

Resource
Allocation

Move values
to/from
registers

Install/
uninstall rules

on switches

Declare/use
program
variables

Construct/
register
policy

Resource
Tracking

Have I spilled
that value?

Will that
packet arrive

at the
controller?

Program
variables

always
accessible

Queries can
read every

packet

Coordination Unregulated
calling

conventions

Unregulated
rule

installation

Function calls
managed

automatically

Policies
managed

automatically

Portability Hardware
Dependent

Hardware
Dependent

Hardware
Independent

Hardware
Independent

The Team

Mike Freedman

Chris Monsanto Jen Rexford

Rob Harrison

Dave Walker

Nate Foster

Alec Story

http://frenetic-lang.org

Implementation Options

Rule Granularity
  micro$ow (exact header match)

– simpler; more rules generated
  wildcard (multiple header match in single rule)

– more complex; fewer rules (may be) generated

Rule Installation
  reactive (lazy)

–  !rst packet of each new $ow goes to controller
  proactive (eager)

–  new rules pushed to switches

20

Frenetic 1.0

Frenetic 2.0

