
Consistent Updates for Software-Defined Networks:
Change You Can Believe In!

Mark Reitblatt
Cornell University

Nate Foster
Cornell University

Jennifer Rexford
Princeton University

David Walker
Princeton University

ABSTRACT
Configuration changes are a common source of instability in
networks, leading to broken connectivity, forwarding loops,
and access control violations. Even when the initial and final
states of the network are correct, the update process often
steps through intermediate states with incorrect behaviors.
These problems have been recognized in the context of spe-
cific protocols, leading to a number of point solutions. How-
ever, a piecemeal attack on this fundamental problem, while
pragmatic in the short term, is unlikely to lead to significant
long-term progress.

Software-Defined Networking (SDN) provides an excit-
ing opportunity to do better. Because SDN is a clean-slate
platform, we can build general, reusable abstractions for net-
work updates that come with strong semantic guarantees.
We believe SDN desperately needs such abstractions to make
programs simpler to design, more reliable, and easier to val-
idate using automated tools. Moreover, we believe these ab-
stractions should be provided by a runtime system, shielding
the programmer from these concerns. We propose two sim-
ple, canonical, and effective update abstractions, and present
implementation mechanisms. We also show how to integrate
them with a network programming language, and discuss po-
tential applications to program verification.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Distributed
Systems—Network Operating Systems

General Terms
Design, Languages, Theory

Keywords
Consistency, planned change, software-defined networking,
OpenFlow, network programming languages, Frenetic.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’11, November 14–15, 2011, Cambridge, MA, USA.
Copyright 2011 ACM 978-1-4503-1059-8/11/11 ...$10.00.

1. INTRODUCTION
What’s the best thing a network operator can do for their

network? Take a vacation. Sadly, this joke is all too true.
Planned change accounts for a significant percentage of fail-
ures [1], leading to hiccups in VoIP calls, lost server connec-
tions, or the death of a player’s favorite character in an online
game. To address these problems, researchers have proposed
extensions to routing protocols and operational practices that
prevent transient anomalies during changes [2, 3, 4, 5, 6].
However useful, these solutions are limited to specific pro-
tocols (e.g., BGP and OSPF) and properties (e.g., loops and
blackholes), and increase system complexity.

Recent trends toward Software Defined Networking (SDN)
could easily exacerbate these problems by making it easy for
programmers to make frequent changes to networks. How-
ever, the opposite is also true: SDN presents a tremendous
opportunity to finally get network change right by empower-
ing researchers to develop new, reusable, and robust abstrac-
tions for managing updates.

In SDN, a program running on a logically-centralized con-
troller directly configures the packet-handling mechanisms
in the underlying switches. For example, the OpenFlow
API allows the controller to install rules that each specify
a pattern that matches on bits in the packet header, actions
(such as drop, forward, or send to the controller) performed
on matching packets, a priority (to disambiguate between
overlapping patterns), and timeouts (to allow the switch to
remove stale rules) [7]. This is in contrast to today’s net-
works, where operators have (at best) indirect control over
the distributed implementations of routing, access control,
load balancing, and so on. However, today’s controller plat-
forms [8, 9, 10, 11] provide a low-level interface for in-
stalling packet-processing rules, reading traffic counters, and
discovering the topology. As a result, programmers must
painstakingly express transitions from one configuration to
another through a sequence of (un)install commands—rule
by rule, switch by switch—and worry about the properties
of every intermediate state in the process.

However, it does not have to be this way. Rather than
asking users to program with low-level, single-switch up-
dates that are difficult to reason about, SDN makes it possi-
ble, in principle, to design platforms that provide powerful

multi-switch updates with strong semantic guarantees. Pro-
grammers who use these new operations will never have to
devise (or think about) incremental, step-by-step transitions
between intermediate configurations. The major difficulty,
of course, is finding those abstract update operations that
have both useful semantics and an efficient implementation.

In this paper, we propose several useful and implementable
abstract update operations. Each of these operations iden-
tifies certain sets of packets and when updating from old
policy to new policy across multiple switches, provides the
guarantee that every packet in the set exclusively uses either
the old policy or the new policy, not some combination of
the two. This frees the programmer from thinking about the
interaction between the old and new policies.

In the simplest case, the “set” of packets is just a single
packet. In this case, each individual packet is guaranteed
to be handled by either the old policy or the new policy, not
some combination. In a more sophisticated case, the set con-
sists of every packet in a flow. The latter is useful, for ex-
ample, to ensure that all packets in a TCP connection reach
the same back-end server. Given these kinds of consistency
semantics, programmers can reduce the difficult problem of
verifying program invariants across a series of incremental
updates to the much simpler problem of verifying the prop-
erty for just the initial and final network states.

In summary, we propose a general and rigorous solution
to the problem of consistent multi-switch updates for SDN.
More specifically, we make the following contributions:

• Consistency classes: We introduce two notions of con-
sistency (per-packet and per-flow), which are useful
across a wide range of applications.

• Consistency mechanisms: We propose concrete mech-
anisms for ensuring consistency, drawing upon features
already available in today’s OpenFlow switches.

• Language abstractions: We show how to incorporate
our abstractions into a programming language, making
programs easier to write, understand, test, and verify.

After a brief example, we present our consistency seman-
tics, and then show how to incorporate these abstractions
into a network programming language. We focus on planned
change in this paper, rather than unplanned events such as
link failures, because changes planned in advance are by far
the most common source of errors. Exploring abstractions
for unplanned changes is part of our ongoing work.

2. CHANGE YOU CAN’T BELIEVE IN
To illustrate the challenges surrounding updates in con-

ventional SDN, consider an example where the network con-
sists of four switches: a load-balancing switch S and three
“filtering” switches F1, F2, and F3, each sitting between
S and the upstream connection to the rest of the Internet.
Figure 1(a) depicts the topology graphically. Two classes
of traffic are connected to S: traffic arriving on ports 1-2

F2

S

F1 F3

(a)
F2

S

F1

(b)

Configuration I
P T Action

S 1, 2 Fwd F1

3, 4 Fwd F2

5, 6 Fwd F3

F1 A,B Monitor
Allow

F2 Allow

F3 Allow

Configuration II
P T Action

S 1 Fwd F1

2 Fwd F2

3-6 Fwd F3

F1 A,B Monitor
Allow

F2 A,B Monitor
Allow

F3 Allow

Figure 1: Access control example 1. Columns ’P’ and ’T’
match on in-port and packet type respectively.

comes from untrustworthy, unregistered guests while traffic
arriving on ports 3-6 is from trustworthy, registered hosts.
At all times, the network should treat packets of types A
and B from untrusted hosts as potential threats (e.g., A and
B might capture packets destined for certain administrative
servers), and monitor and possibly deny these packets based
on an access control policy. On the other hand, all packets
from hosts attached to ports 3-6 should be allowed to pass
through the network unmodified. We assume that any of the
filtering switches have the capability to perform the requisite
monitoring, blocking, and forwarding.

The high-level policy can be implemented in several ways;
depending on the load of the network, one may be better than
another. Initially, we will assume the switches are config-
ured as shown in the table on the left of Figure 1: the switch
S sends traffic from ports 1 and 2 to F1, from ports 3 and 4
to F2 and from ports 5 and 6 to F3. Switch F1 monitors (and
denies) A and B packets and allows all other packets to pass
through while F2 and F3 simply let all traffic pass through.

Now, suppose the load shifts, and we need more resources
to monitor traffic from untrusted hosts. We might then re-
configure as shown on the right side of Figure 1, where the
task of monitoring port 1-2 traffic is split between F1 and
F2 and port 3-6 traffic is pushed onto F3. Because we can-
not update the network in one atomic step, the individual
switches must be reconfigured one-by-one. However, if we
are not careful, incremental updates of individual switches
can lead to transient configurations that do not implement
the intended access control policy. For example, if we start
by updating F2 so that it denies A and B traffic, we interfere
with traffic sent by trustworthy hosts. If, on the other hand,
we start by updating switch S so that it forwards its traffic ac-
cording to configuration II (sending port 1 traffic to F1, port
2 traffic to F2 and ports 3-6 traffic to F3), we also encounter
a transient error: A and B packets from untrustworthy hosts
are allowed. There exists a valid transition plan:

2

Configuration I
P T Action

S 1, 2 Fwd F1

3−6 Fwd F2

F1 A,B Monitor
Allow

F2 Allow

Configuration II
P T Action

S 1, 2 Fwd F2

3−6 Fwd F1

F1 Allow

F2 A,B Monitor
Allow

Figure 2: Access control example 2.

1. Update S to forward 1-2 traffic to F1 and 3-6 to F3.
2. Wait until in-flight packets have been processed by F2.
3. Update F2 to monitor/deny A and B packets.
4. Update S to forward 1 to F1, 2 to F2 and 3-6 to F3.

But finding this ordering requires performing fairly intricate
reasoning about the effective forwarding policies during a
sequence of intermediate configurations—something that is
tedious and easy to get wrong, even for this simple example.
Moreover, the space of potential intermediate configurations
is potentially very large and many intermediate configura-
tions violate important properties (e.g., implementing the ac-
cess control policy) that hold in both the old and new con-
figurations. We believe that any energy the programmer de-
votes to navigating this space would be better spent in other
ways. The tedious job of finding a safe sequence update or-
dering should be factored out, optimized, implemented in an
automatic tool, and shared across applications.

Interestingly, in certain situations it is impossible to find
an ordering that implements the transition. Consider a varia-
tion on the first example, shown in Figure 1(b), where there
are only two filtering switches and we want to swap the roles
of F1 and F2 while maintaining the access control invari-
ant. Surprisingly, this is impossible unless S itself performs
the monitoring for port 1 and 2 traffic during the transition,
which may not be possible if S lacks the required monitoring
capability. Thus, a mechanism more powerful than careful
ordering is needed to provide a fully general solution.

3. CONSISTENCY ABSTRACTIONS
Problems with network updates arise because packets see

an inconsistent “view” of the network and are processed ac-
cording to a mixture of old and new configurations. While
developers can sometimes code around these problems by
writing programs that update switches in a particular order,
writing such programs is difficult. This section presents a
different approach: two core abstractions, each embodying
a different notion of consistency, that provide a natural guar-
antee about how packets will be processed. For each abstrac-
tion, we present a motivating application, characterize its
formal properties, and discuss implementation mechanisms.

3.1 Per-packet Consistency
The most fundamental consistent update abstraction is per-

packet consistency, which guarantees that each packet flow-
ing through the network will be processed according to a
single network configuration—either the old configuration

prior to the update, or the new one after the update, but
not a mixture of the two. In the example in Figure 1, per-
packet consistency rules out situations in which a packet is
processed by the new configuration on ingress switch S and
the old configuration on the filtering switch F2, thereby cir-
cumventing the access control policy.

To implement per-packet consistency, we propose a sim-
ple mechanism that stamps packets with their configuration
version at ingress switches and tests for the version number
in all other rules. This can be implemented in OpenFlow us-
ing a header field to encode version numbers (e.g., VLAN
tags or MPLS labels). To update to a new configuration, the
controller first pre-processes the rules in the new configura-
tion, augmenting the pattern of each rule to match the new
version number in the header. Next, it installs these rules on
all of the switches, leaving the rules for the old configuration
(whose rules match the previous version number) in place.
At this point, every switch can process packets with either
the old or new policy, depending on the version number on
the packet.

The controller then starts updating the ingress switches,
replacing their old rules with new rules that stamp incoming
packets with the new version number. Because the ingress
switches cannot all be updated atomically, packets entering
the network are processed with a mixture of the old and new
policies for a time, but any individual packet is handled by
just one policy throughout the network. Finally, once all
packets following the “old” policy have left the network,
the controller deletes the old configuration rules from all
switches, completing the update.1 Figure 3 shows the in-
termediate configurations generated by this approach. Note
that in going from one configuration to the next, the individ-
ual switches can be updated in any order.

We argued that a per-packet consistent update would en-
force the access control policy in our example, but, in gen-
eral, how can developers know if their invariants will be pre-
served? Formally, per-packet consistent updates preserve all
path properties. A path property captures behaviors that can
be expressed in terms of packets p and the list l of links
the packet traverses as it is forwarded through the network.
Many useful properties can be expressed as path proper-
ties including basic connectivity, loop-freeness, and security
properties such as “all packets from host h must be dropped”
or “all Web traffic must waypoint via middlebox m.” When
using a per-packet consistent update, the programmer is guar-
anteed that if a path property P is true of all valid packet-
path pairs in both the initial and final configurations, it will
be true of all paths taken by any packet at run time before,

1The controller can safely delete the old rules after some maximum
transmission delay (i.e., the sum of propagation and queuing de-
lay, maximized over all paths) has elapsed. Since our mechanisms
never introduce loops, we do not need to account for increases in
delay due to transient forwarding loops. In practice, the controller
can be quite conservative in estimating the delays and simply wait
for several seconds (or even minutes) before removing the old rules.

3

Configuration I
P T V Action

S 1, 2 SetV 1, Fwd F1

3, 4 SetV 1, Fwd F2

5, 6 SetV 1, Fwd F3

F1 A,B Monitor
Allow

F2 Allow
F3 Allow

Configuration II
P T V Action

S 1, 2 SetV 1, Fwd F1

3, 4 SetV 1, Fwd F2

5, 6 SetV 1, Fwd F3

F1 A,B 1 Monitor
1 Allow

A,B 2 Monitor
2 Allow

F2 1 Allow
A,B 2 Monitor

2 Allow
F3 1 Allow

2 Allow

Configuration III
P T V Action

S 1, 2 SetV 2, Fwd F1

3, 4 SetV 2, Fwd F2

5, 6 SetV 2, Fwd F3

F1 A,B 1 Monitor
1 Allow

A,B 2 Monitor
2 Allow

F2 1 Allow
A,B 2 Monitor

2 Allow
F3 1 Allow

2 Allow

Configuration IV
P T V Action

S 1, 2 SetV 2, Fwd F1

3, 4 SetV 2, Fwd F2

5, 6 SetV 2, Fwd F3

F1 A,B 2 Monitor
2 Allow

F2 A,B 2 Monitor
2 Allow

F3 2 Allow

Figure 3: Configurations for per-packet consistent update example. The V column matches on version number.

during, and after the update. In other words, per-packet con-
sistent update preserves all path properties.

In addition to studying per-packet consistency from the
perspective of property-preservation, one can consider its re-
sponsiveness—how fast the network converges to the new
configuration. We consider two aspects of responsiveness:
initial responsiveness (how long before some traffic is han-
dled by the new configuration), and complete responsiveness
(how long before all traffic is handled by the new configura-
tion). For the implementation just described, initial respon-
siveness is proportional to the number of internal switches
plus the cost of installing a new configuration on them. Com-
plete responsiveness is proportional to the total number of
switches and the transmission delay of the network.

3.2 Per-flow Consistency
Per-packet consistency, while simple and powerful, is not

always enough. For example, consider a network in which a
single switch S balances load between two back-end servers
A and B. Initially, S directs traffic from hosts whose IP
addresses end with 0 to A and 1 to B. Now suppose that
some time later, we bring two additional servers C and D
online, and re-balance the load using the last two bits of the
IP address, directing traffic from hosts whose addresses end
in 00 to A, 01 to B, 10 to C, and 11 to D.

Intuitively, we want to process packets from new TCP
connections according to the new configuration. However,
to avoid disrupting applications, it is important that all pack-
ets in existing flows should go to the same server, where a
flow is a sequence of packets with related header fields not
separated by more than n seconds, and the particular value
of n depends upon the specific protocol and application. For
example, the switch should send packets from a host whose
address ends in “10” to A, and not to C as the new policy
would dictate, if the packets belong to an existing TCP con-
nection. Simply processing individual packets with a single
configuration will not guarantee the desired behavior.

Per-flow consistency guarantees that all packets in the same
flow will be handled by the same version of the policy. For-
mally, the per-flow abstraction preserves all path properties,
just like per-packet consistency. In addition, it preserves
properties that can be expressed in terms of the paths that

sets of packets belonging to the same flow take through the
network. Such properties can be used to capture richer no-
tions, including in-order delivery of packets in the same flow.

Implementing per-flow consistency is significantly more
complicated than per-packet consistency because the system
must keep track of the active flows and be able to iden-
tify packets that belong to such flows. A simple mecha-
nism for implementing per-flow consistency can be obtained
by combining versioning with rule timeouts. Similar ideas
have been explored in the context of an OpenFlow load bal-
ancer [12]. The idea is to pre-install the new configuration
on the internal switches, leaving the old version in place,
as in per-packet consistency. Then, on ingress switches, the
controller sets timeouts on the rules for the old configuration
and installs the new configuration at low priority. When all
flows matching a given rule die, the rule expires and the rules
for the new configuration take effect. This scheme works as
long as the packets in a given flow enter the network at a
single ingress point. Dealing with flows involving multiple
ingresses is subtle, and beyond the scope of this paper.

Note that in situations where multiple flows are processed
using the same rule, the rule may be artificially kept alive
even though the individual flows have died. Thus, it may
be necessary to refine the old configuration rules to cover
a smaller piece of the flow space, to ensure that rules ex-
pire in a timely fashion. Note that the refinement scheme
has a strong effect on the responsivity of this mechanism—
if the refined rules are coarse, they may never die! On the
other hand, “finer” rules require more rules on the switch, a
potentially scarce commodity. Managing the rules and dy-
namically refining them over time can be a complex book-
keeping task, especially if the network undergoes a subse-
quent policy transition before the previous one completes.
However, this task can be implemented and optimized once
in a generic run-time system, and leveraged over and over
again by network programmers in different applications.

An alternative mechanism for implementing per-flow con-
sistency is to exploit the wildcard clone feature of the De-
voFlow extension of OpenFlow [13]. When processing a
packet with a wildcard clone rule, a DevoFlow switch cre-
ates a new “microflow” rule that matches the header fields of
the packet exactly, and then uses the new rule to process the

4

void main() {
eventStream change;
install(perpacket,C1);
... run ...
wait(change);
install(perpacket,C2);

}

(a)

property P1(p,l) =
(inport(hd(l)):[1,2]) &
(p in [A,B])
==> last(l) == deny

property P2(p,l) =
(inport(hd(l):[1,2]) &
not(p:[A,B])
==> last(l) == allow

property P3(p,l) =
(inport(hd(l):[3..6])
==> last(l) == allow

(b)

config C1 =
{ S=[(inport:[1,2]) -> fwd(F1),

(inport:[3,4]) -> fwd(F2),
(inport:[5,6]) -> fwd(F3)]

F1=[(packet:[A,B]) -> deny,
true -> allow],

F2=[true -> allow],
F3=[true -> allow] };

config C2 =
{ S=[(inport:[1]) -> fwd(F1),

(inport:[2]) -> fwd(F2),
(inport:[3..6]) -> fwd(F3)],

F1=[(packet:[A,B]) -> deny,
true -> allow],

F2=[(packet:[A,B]) -> deny,
true -> allow],

F3=[true -> allow] };

(c)

Figure 4: Program, properties, and configurations.

packet. In effect, clone rules cause the switch to maintain
a concrete representation of all active flows in its flow ta-
ble. This enables a simple implementation mechanism: first,
use clone rules whenever installing configurations; second,
to update from old to new, simply replace all old clone rules
with new clone rules for the new configuration. Existing
flows will continue to be handled by the exact-match rules
generated by the old clone rules, and new flows will be han-
dled by the new clone rules, which will themselves immedi-
ately begin spawning new microflow rules. Unlike the first
scheme, this mechanism does not require complicated book-
keeping on the controller, although it does require a more
complex switch.

4. THE ABSTRACTIONS AT WORK
In this section, we show how to incorporate these simple

consistency abstractions into a network programming lan-
guage, and we discuss the benefits that result.

Recall the example from Section 2 with four switches, S,
F1, F2, and F3, and two configurations, which we will call
C1 and C2. Suppose that the program is organized as a sim-
ple state machine that transitions from one configuration to
the other after receiving a signal on the event stream change.
The code for this program is given in Figure 4 (a). To install
the configuration C on the switches in the network, it uses the
command install(con, C), where con describes the con-
sistency guarantee we want (e.g., perpacket consistency, as
explained in Section 3.1).

The configurations themselves are defined in Figure 4(c);
they use a simple notation inspired by Frenetic [14]. Each
configuration lists a series of policy clauses for each switch.
A policy clause consists of a predicate, which identifies a set
of packets using constraints on the ingress port or headers,
combined with an action. Clauses are matched in order, and

if a packet arrives on a switch and does not match any of the
clauses, the packet is dropped.

The program in Figure 4(a) is so simple, it barely deserves
comment—indeed, the point of the example is to demon-
strate how easy it is to write programs using well-designed
abstractions. However, it is worth noting that the program
has a clear meaning that can be understood independent of
the specifics of C1 and C2: it is a program that installs a first
configuration, waits for a signal and then installs a second
configuration. A language with update operations supports
a powerful kind of modularity where configurations can be
defined (and modified) separately from the “glue” used to
string configurations together. Without such operations, the
programmer would have to issue a sequence of low-level
commands to (un)install rules that transition the network
from one configuration to the next. Even worse, these com-
mands would be specific to C1 and C2 and any change to
either configuration would likely invalidate the program.

Now suppose the programmer wants to determine that the
network, running this program, always satisfies a critical in-
variant that is expressed as a path property. What must she
do? She must establish that the intended path property holds
in each independent configuration. To illustrate, consider the
path property consisting of the conjunction of properties P1,
P2, and P3 in Figure 4(b), which formalizes the access con-
trol policy. How difficult is it to verify that this holds of C1
and C2? For this artificial example, one could check by hand,
but if the example were larger one would need a tool such as
a model checker. In either case, the use of update operations
is essential—it transforms a difficult (and perhaps infeasible)
verification problem into one that can be easily automated.

In summary, operations for updating networks are essen-
tial abstractions for SDN programming. They turn hard-to-
write programs into simple ones and enable formal verifica-
tion of key safety invariants.

5. RELATED WORK
The problem of avoiding undesired transient behavior dur-

ing planned change has been well studied in the domain
of distributed routing protocols. Most prior work focused
on protocol-specific approaches of adjusting link metrics to
minimize disruptions [2, 3, 5]. The recent work by Vanbever
et. al [6] also handles more significant intradomain routing
changes, such as switching to a different routing protocol.
Unlike our approach, these methods can only preserve basic
properties such as loop-freedom and connectivity. In addi-
tion, these approaches are tied to distributed routing proto-
cols, rather than the logically-centralized world of SDN.

The recent work on Consensus Routing [4] has similar
goals to our research in that it seeks to eliminate transient
errors such as disconnectivity or black holes that arise dur-
ing BGP updates. In particular, Consensus Routing’s “stable
mode” is similar to our per-packet consistency, though com-
puted in a distributed fashion for BGP routes. On the other
hand, Consensus Routing only applies to a single protocol

5

(BGP), whereas our work may benefit any protocol or ap-
plication developed in our linguistic framework. Along the
same lines, the BGP-LP mechanism described by Katabi et.
al [15] is essentially per-packet consistency for BGP routing.

6. FUTURE WORK
This paper outlines two key abstractions, per-packet con-

sistency and per-flow consistency, and sketches implemen-
tation techniques for both of them. Still, the work described
here is only a first step in this space. We have yet to imple-
ment our proposal and evaluate its performance in practice.
Indeed, we anticipate the need for a number of optimizations
such as those that limit the set of rules that need to be sent
to switches to only those rules that changed between poli-
cies. In addition, while per-packet consistency and per-flow
consistency appear to be core abstractions with excellent se-
mantic properties, there may be other notions of consistency
that either perform better (but remain sufficiently strong to
provide benefits beyond the standard eventual consistency)
or provide even richer guarantees.

7. CONCLUSIONS
In a recent blog post [16], Koponen and Casado describe

three kinds of controller platforms for SDNs: (i) application-
specific controllers, built with a single purpose in mind, (ii)
concrete controllers that expose switch-level capabilities and
communication protocols directly, and (iii) abstract controllers
that provide high-level abstractions for specifying network
behavior independent of the hardware. This third category of
abstract controllers presents the most significant challenges
for programming language and networking researchers. Here,
the goal is to identify abstractions that make it easier to de-
fine more flexible, more reliable, more reusable, and more
secure network applications.

Already, important progress has been made in this broad
area. ONIX [10] provides the abstraction that the network is
an eventually-consistent graph including both physical and
logical elements. NetCore [17] provides the abstraction that
the network forwarding policy may be defined using an arbi-
trary function from packets (located at switches) to actions,
and compiles such functions to efficient switch-level rules.
Frenetic [18] provides abstractions for reading network state
that can be freely composed with forwarding policies.

This paper proposes consistent writes, the dual of Fre-
netic’s reads, as another key abstraction in the SDN arsenal.
With consistent writes, one can reason definitively about the
invariant semantic properties enjoyed by network policies.
There is no possibility of transient failures or security loop-
holes when programs switch from one policy to the next. In
other words, we finally have change we can believe in.

Acknowledgments. We wish to thank Hussam Abu-Libdeh,
Robert Escriva, Mike Freedman, Mike Hicks, Eric Keller,
Srinivas Narayana, Alan Shieh, and the anonymous review-
ers for many helpful suggestions. Our work is supported

in part by ONR grant N00014-09-1-0770 and NSF grants
CNS-1111698 and CNS-1111520. Any opinions, findings,
and recommendations are those of the authors and do not
necessarily reflect the views of the NSF or ONR.

8. REFERENCES
[1] A. Markopoulou, G. Iannaconne, S. Bhattacharrya, C. N.

Chuah, and C. Diot, “Characterization of failures in an IP
backbone,” in IEEE INFOCOM, 2004.

[2] P. Franois, M. Shand, and O. Bonaventure, “Disruption-free
topology reconfiguration in OSPF networks,” in IEEE
INFOCOM, May 2007.

[3] P. Francois, P.-A. Coste, B. Decraene, and O. Bonaventure,
“Avoiding disruptions during maintenance operations on
BGP sessions,” IEEE Trans. on Network and Service
Management, Dec 2007.

[4] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson,
and A. Venkataramani, “Consensus routing: The Internet as a
distributed system,” in NSDI, Apr 2008.

[5] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful network
operations,” in IEEE INFOCOM, Apr 2009.

[6] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure, “Seamless network-wide IGP migration,” in
SIGCOMM, Aug 2011.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“Openflow: Enabling innovation in campus networks,”
SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker, “NOX: Towards an operating
system for networks,” SIGCOMM CCR, vol. 38, no. 3, 2008.

[9] “Beacon: A Java-based OpenFlow control platform.,” Nov
2010. See http://www.beaconcontroller.net.

[10] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker, “Onix: A distributed control platform for
large-scale production networks,” in OSDI, Oct 2010.

[11] A. Voellmy and P. Hudak, “Nettle: Functional reactive
programming of OpenFlow networks,” in PADL, Jan 2011.

[12] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based
server load balancing gone wild,” in Hot-ICE, Mar 2011.

[13] J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. Curtis,
and S. Banerjee, “DevoFlow: Scaling flow management for
high-performance networks,” in SIGCOMM, Aug 2011.

[14] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker, “Frenetic: A network
programming language,” in ICFP, Sep 2011.

[15] D. Katabi, N. Kushman, and J. Wrocklawski, “A Consistency
Management Layer for Inter-Domain Routing,” Tech. Rep.
MIT-CSAIL-TR-2006-006, Cambridge, MA, Jan 2006.

[16] T. Koponen and M. Casado, “What might an SDN controller
API look like?.” http://tinyurl.com/3nxnwgm, Aug
2011.

[17] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A
compiler and run-time system for network programs,” in
POPL, Jan 2012.

[18] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker, “Frenetic: A network
programming language,” in ICFP, Sep 2011.

6

