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Software-Defined Networks

The Good
• Logically-centralized architecture
• Direct control over packet processing
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The Bad
• Low-level programming interface
• Functionality tied to hardware

The Ugly
• Two-tiered programming model
• Weak consistency model

















Other Abstractions

Network Queries [PRESTO 2010, ICFP 2011]
• Declarative language for reading network state
• Decouples monitoring from forwarding
• Enables modular composition of programs

Network Policy [POPL 2012]
• Expressive configuration language

- Full set-theoretic operators
- Arbitrary black-box functions

• Compiler generates efficient switch-level rules



A Closing Analogy
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