
Language Abstractions for 
Software-defined Networks

Nate Foster 
Alec Story

Mark Reitblatt

Michael Freedman
Christopher Monsanto

Jennifer Rexford
David Walker

Rob Harrison





Software-Defined Networks

The Good
• Logically-centralized architecture
• Direct control over packet processing

Images by Billy Perkins

The Bad
• Low-level programming interface
• Functionality tied to hardware

The Ugly
• Two-tiered programming model
• Weak consistency model

















Other Abstractions

Network Queries [PRESTO 2010, ICFP 2011]
• Declarative language for reading network state
• Decouples monitoring from forwarding
• Enables modular composition of programs

Network Policy [POPL 2012]
• Expressive configuration language

- Full set-theoretic operators
- Arbitrary black-box functions

• Compiler generates efficient switch-level rules



A Closing Analogy

Concern
Asse
Langu

mbly 
uages

Progra
Langu

mming 
uages

x86 NOX ML/Haskell Frenetic

Resource 
Allocation

Move values 
to/from 
register

Manipulate 
forwarding 

rules

Declare/use 
variables

Declare/install 
policy

Resource 
Tracking

Have I spilled 
that register?

Will that 
packet arrive at 
the controller?

Variables 
always available

Queries can 
read every 

packet

Coordination
Unregulated 

calling 
conventions

Unregulated 
rule 

management

Function calls 
managed 

automatically

Policies 
managed 

automatically

Portability
Hardware 
dependent

Hardware 
dependent

Hardware 
independent

Hardware 
Independent



Thank You!

Collaborators
Mike Freedman
Rob Harrison
Chris Monsanto
Mark Reitblatt
Emin Gün Sirer
Cole Schlesinger
Shrutarshi Basu
Alec Story
Jen Rexford
Dave Walker

http://frenetic-lang.org


